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A STUDY OF POLAR MOTION

Antonios Terpos
University of Thessaloniki Polytechnic School
Division of Rural and Surveying Engineering

1. Introduction (Historical) /6*

The study of polar motion begins actually in the year 1765,
when Euler published a classic paper in which he examines what
the laws describing Earth's rotational motion would be if the
Earth were a rigid body having the shape of an ellipsoid.
Euler demonstrated that, under these conditions, there are two
possibilities:

1. If the inertial axis of the Earth coincides initially
with the principal inertial axis, i.e., the rotational axis of
the corresponding ellipsoid, then the Earth will keep rotating
around its principal rotational axis. Therefore, in this case,
the rotational axis of the Earth remains at a fixed position,
with respect to its mass, and the points of intersection of
this axis with the surface of the Earth, i.e., the geographical
poles of the Earth, will be fixed points on the surface of
the Earth.

2. If the rotational axis of the Earth does not initially
coincide with its principal inertial axis, then the rotational
axis will move continuously around the principal inertial axis
of the Earth, describing a cone by revolution, a cone which
has as a vertex the center of mass of the Earth. The position
of the rotational axis of the Earth, at an arbitrary moment, is
called instantaneous rotational axis in this case, and the
points of intersection of this axis with the surface of our
planet are called instantaneous geographical poles, or simply
instantaneous poles of the Earth at the moment under,.considera-
tion.

Therefore, each one of the instantaneous poles of the Earth
describes, in this case, the circumference of a small circle
on the surface of the Earth, the center of whose circumference
coincides with the point at which the principal rotational axis
of the Earth intersects the corresponding hemisphere of the
Earth.

This phenomenon is known as "polar motion." Euler found /7
that the period of the polar motion is equal to 304 mean solar
days. Euler showed that the radius of the circular trajectile
of the pole can not be computed theoretically, but it has to
be determined using observations. Following Euler's introduction,
namely that the Earth is subjected to a free nutation with period

*Numbers in the margin indicate pagination in the foreign text.
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A/(CCA) sidereal days, Peter. in 1841, Bessel in 1842, and
Maxwell in 1851 investigated the latitude changes with a ,.
period of 10 months. The results of these investigations,
which are proved with difficulty, showed changes on the order of
less than 0",l and of doubtful importance. However, Lord Kelvin
suggested that the results can be of extreme importance. His
opinion was based on geophysical considerations, and he had
calculated that the displacement in the aerial mass would cause
a wobble on the order of 0".05 to 0".5. In Kelvin's inquiry,
Newcomb analyzed (studied).the latitude of Washington during
the years 1862-1865, for changes of 10 months, and he got a
difference in value of about 0".05 X 0".03. This result was
announced by Kelvin during the presidential ceremony.,at the
British Association as a proof of free nutation.

When the phenomenon was examined, it was proven that Kelvin
was right as far as the event went; he was, however, mistaken
in computing the period. The exact solution was found, perhaps
characteristically, during an investigation of a completely
different kind, and before an opinion had been formed about
change frequency.

In 1884, Kinster, in Berlin, started a series of measure-
ments in order to determine the constant of aberration, using
small differences in siderial zenith distances, according to /8
a method discovered by Tolcott (U:.S.. Association of Engineers).

He was surprised when he found a change in the above con-
stant, an almost annual one. Having personally examined all
possible values for errors, he was led to conclude that this
was due to a change in latitude on the order of 0".2. The
result was announced at the convention of 1888 in Salzburg,
and the International Geodetic Association immediately became
interested in the matter. A rigorous investigation was carried out
in 1821 [sic]. Measurementsoof the latitude were taken simul-
taneously in Waikiki and in Berlin. The two stations are sepa-
rated almost exactly by 1800 in meridian longitude, i.e., they
lie upon the same meridian. If, however, the rotational axis
is continuously :changing position within the mass of the
Earth, then the astronomical geographic coordinates of different
places on the Earth's surface must also be changing continuously.
Indeed, the expected result was achieved with remarkable success.
The change indicated was on the order of 0".5, and according to
Professor Firster of Berlin, Kelvin's prediction of 1876 had
been completely verified, and even the "abnormal movements of
the Earth's axis, on the order of 0".5 can be attributed to the
temporary changes of sea level, due to meteorological causes."

During that time, S.C. Chandler, in Cambridge, had begun
a complete analysis of changes, trying to discover the
changes in latitude since the era of Bradley, i.e., about 200 /9
years earlier, and to show that many disagreements are due to
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latitude changes. One of the first announcements Chandler
made was that the observations showed a time term with a
period of 428 days, i.e. about 40% longer than the classical
value of Euler. This result was not the one expected, and
it caused doubts as to the validity of the observations.
However, Newcomb showed, 1 year later, that the retreat of the
Earth and the oceans could give exactly such an increase in
the period of 10 to 14 months (Newcomb, 1892). He attributed
the change to the easily moving oceans, the remaining section
to an elastic retreat of the Earth. With this remark, Newcomb
suggested t)!h a t latitude observations can show, in one of
the best ways, the determination of rigidity (plasticity) of
the Earth. Later, Chandler discussed the probability of exis-
tence of an eternal termin the latitude change; however, he
could not discover such a change. Chandler also mentioned that
he had determined some rather important variations with a
nonannual period.

For the better organization and coordination of research
relative to the phenomenon of polar motion, the "International
Latitude Service" (I.L.S.) was established in 1898, which was
renamed the "International Polar Motion Service" in 1963.
Important observations of this service on polar motion are made
in observatories which are known as international latitudeobservatories. In order that we be able to use the same stars, /10
the observatories chosen were all on the same parallel, 3900.8 ,
and distributed as symmetrically as possible, according to
geographical longitude. Among the observatories mentioned
here, only those of Muzusawa and Ukiah have operated without
interruption until the present.

Unfortunately, the program of observations and reductions
was not continuous. We distinguish three periods:

1. The German, 1900-1922.7.

2. The Japanese (Kimura) 1922.7-1935.

3. The Italian, 1935--.

At the international latitude observatories, a determina-
tion of the astronomical latitude of the place was performed
every clear night with the aid of an "optical zenith telescope"
by the method of Horrebow-Talcott. In 1912, the "floating
zenith telescope" of Cookson was introduced. In 1915, the
photographic zenith tube of Ross (PZT) was introduced in Green-
wich. This was introduced to Washington (U.S. Naval Observatory)
and later to other observatories, and finally to Greenwich and
Mizusawa. It is hoped that all the I.L.S. observatories will
be supplied with a PZT tube. Besides the PZT, the "impersonal
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astrolabe" of Danjon, of the
same accuracy as the PZT, is

to guarantee a greater accuracy,
- X7 . it is necessary that all the

observations now performed in
the I.L.S. observatories be

., done in Mizusawa, where the
officies of the Polar Motion
Service have been located
since 1962.

0 2. Precession, Nutation and /11
Wobble

2.1. Wobble and Precession

Let us assume that we
take a picture of the stars
with a camera directed verti-
cally upward, i.e., with
direction opposite the vector

K- denoting the direction of the
gravitational field of the
Earth at that point. On these
photographs we observe that a
star describes traces which
seem to belong to concentric

circles. There are two positions on the Earth which almost con-
stitute the center of these concentric circles (circumferences).
We shall call these points poles of rotation. We define the
two points of the celestial sphere with respect to which a star
has no daily motion as instantaneous poles vertically above the
poles of rotation. The axis passing through the poles of rota-
tion and extending from one instantaneous pole to the other is
called axis of rotation (instantaneous).

If we note the positions of the poles of rotation within
a few feet (0.305 m) from their previous position, if the com-
parison of the position is made after the lapse of a year, we
will observe that the poles have ff o v e d along an abnormal
elliptic trajectile of a mean diameter of 6.10 m.

We define a fixed position of the pole leading to a base
near the center of the ellipse. This base defines the reference
pole. Finally, the axis extending from the reference pole to
the center of the Earth is called the reference axis.

It is obvious from the above definitions that the reference
pole assumes a mean position among the consecutive positions of
the pole.
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Therefore, the pole of rotation will des.cribe a tra-
jectile around the reference pole. With respect to an obser-
vation on a fixed star, the axis of rotation (instantaneous) /12
remains fixed, while the reference pole (which is determined
for a daily motion on the average) describes a trajectile
around the pole of rotation.

Ecliptic axis

Trajectile of the P Instantaneous axis of
North Pole of rotation of the Earth
the celestial
sphere ean position of axis of rota-

r tion of the Earth (generally
reference pole)

o Trajectile of the pole of
/ the Earth

Now a distinction must be made among the following
phenomena.

The instantaneous rotational axis describes within the Earth
a trajectile around the mean position of the reference axis.
It also describes a trajectile on the celestial sphere around
its North Pole in 25,796 years. The first phenomenon corresponds
to the polar motion and has various causes. However, the trajec-
tile of the instantaneous pole around the North Pole of the
celestial sphere is due to the phenomenon of precession of the
equinoxes and nutation of the axis of the celestial sphere.

In these two phenomena we observe the following. The change
of the instantaneous rotational axis in space causes a continuous
change of the coordinates of the stars on the celestial sphere,
while the astronomical coordinates of various places on the
surface of the Earth remain fixed. Conversely, because of the
motion of the instantaneous rotational axis of the Earth within
the Earth, the astronomical coordinates of various places of
the Earth and the astronomical azimuths of various targets in
these places continuously change, while the coordinates of the
stars on the celestial sphere remain fixed. Notice that the /13
changes of the astronomical coordinates and of the astronomical
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azimuths which are caused by polar motion offer special interest,
because they have important consequences on the astronomical
determinations, the absolute meridian observations, and i;
exact time measurement.

In summary, we conclude from the above that the instan-
taneous rotational axis of the Earth undergoes changes of
orientation in space. These changes are connected with pre-
cession and nutation. There are, besides these changes, changes
of small period in the position of the instantaneous pole also,
or forced nutations. It should be noted that these changes of
instantaneous pole caused by change in orientation of the
rotational axis of the Earth are completely different from the
wobbles of the Earth relative to the axis and have different
causes. In other words, a distinction of two kinds of motion
can be made:

1. Change of the instantaneous axis in space because of
precession and nutation. A periodic phenomenon.

2. Change of the position of the instantaneous pole on
the Earth. Resultant position due to a series of phenomena
of various small periods or even anomalies (wobble).

It would be disadvantageous if the discovery and study of
the phenomena of precession and wobble could only be made from
observations of the poles. Actually, the measurement of the
proper angle can be made in every value of the latitude.

The angles which we determine are the ones which give
the declination of a star and the latitude of the place of
observation.

The following figure shows the position for the measurement
of the angles for the ideal case of precession or forced nutation
(left), and wobble (right) (i.e., angle measured from the center /14
with respect to the plane(,of the equator).

tA A

- Equaor



Let S be a star; "then ZA gives the direction of the gravita-
tional field (Z = zenith), and A is the fixed position on
the Earth.

The latitude 4 is defined by the relation 900 - POZ (co-
latitude), where POZ is the angle between the instantaneous
rotational axis (or the instantaneous pole) and OZ (or the zenith).

Let us consider the left-hand figure. The instantaneous
pole has been moved away from polaris. As a consequence, we
have a change in declination but not necessarily a change in
latitude. This is the case of precession.

Let us now consider the figure on the right. The reference
pole M has been displaced to the left from the rotational pole
R. The declination remains the same; however, the latitude
has changed. This is the case of wobble.

Hence it follows that the change in declination (6) deter-
mines precession, while wobble is determined by the change in
latitude.

2.2. Cause of Precession and of Forced Nutation

The changes of rotational axis of the Earth in space are
mainly caused by the attraction of the M.oon and the Sun in the
equatorial swelling of the Earth. This phenomenon would not
take place had the Earth not been a sphere or had the equatorial
plane coincided with the elliptical plane of the orbit of the
Sun and with the plane of the orbit of the M oon. Originally, /15
however, an angle of 23027 ' was formed with the elliptical plane
of the Sun and an angle 23027 ' ± (50 9')k (k = real in the
interval [0,1]) with theM.oon.

Had the earth not been rotated, the result of such an
attraction would be the coincidende of the orbit and the equa-
torial plane. However, because of the rotation, we will have
the gyroscopic phenomenon of rotation, i.e. the instantaneous
rotational axis of the Earth will describe a clockwise orbit
within 25,796 years. The obliquity of the ecliptic of the orbit
remains close to 23027 ' . This phenomenon is known as precession
of equinox. If we call A, A, C the moment of inertia with respect
to the principal axes of the Earth where C is the greatest value
of the moment of inertia from the observed precession and the
mass of the Moon, we can compute the constant of precession.

C - A
H A =0.00327293 0.00000075
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Besides the Sun and the Moon, the other planets also apply
a small attraction, giving a small precession. :The combination
of the orbits of the Sun and Moon is connected with wobbles
of small period around 18 2/3 nutations of the Moon. The
small periods imply originally a motion of the instantaneous
pole to and from the poles of the ecliptic, an inclination
which is called nutation (forced nutation F Eulerian free
nutation).

We conclude from the above that because of the noncoincidence
of the equatorial swelling of the Earth with the orbits of the
Sun and Moon, we have the phenomenon of precession. For the
same reason, we also have the phenomenon of nutation (or forced
nutation). Especially for nutation, because of the change of
the inclination of the plane of the Moon orbit with respect to /16
the equatorial plane having a period of 18 2/3 years, we will
finally have a composite curve described because of the motion
of the instantaneous axis sweeping the surface of a cone within
25,796 years, and because of a motion of it sweeping the surface
of an elliptic cone at the same time within 18 2/3 years.

(That is, precession is a result of the Moon and the Sun;
nutation is a result mainly of the change of the Moon's orbit
and less because of the attraction of the Moon and the Sun.)

Corresponding figure. 7°- The:.equations giving pre;I
cessioh, and nutation are:

where Y0 is the position of
0 the vernal point y at a certain

moment and y is its position
after a time period t, wO is
the mean value of the obliquity
of the ecliptic, a = 500.4 and

d/o sin s#q Sin2 .. M t b sinO + Csin -

w,, = cos ,S, L?,cos.,2,?Mt Acosff CtCcos-, f\

where AS =.geocentric longitude of the Sun; b, c proper
AM = geocentric longitude of the Moon,bl, cl coefficients
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Note. Nutation: 1i. Immutable sweeping the surface of a cone
around P.

2. Semiellipse because of change in the
Moon's orbit.

3. Displacements around the mean position
within a distance Aw because of the Sun
and Moon.

3. General Remarks on the Methods of Observation and Reduction /17

3.1. Results of the Study of the Phenomenon

As we have already mentioned, the International Latitude
Service was established in 1898, and renamed the International
Polar Motion Service in 1963. This service collects the results
of determinations of the astronomic latitude which are obtained
in the international latitude observatories. Based on these
data, this service computes and publishes, within a very short
period of time, temporary values of the x;,ycoordinates of the
pole, in its monthly periodical "Monthly Notes of the Inter-
national Polar Motion Service."

Detailed description of the methods used for the computa-
tion of the temporary x,y coordinate values of the pole, and
also improved values of these coordinates are published in its
annual periodical "Annual Report of the International Polar
Motion Service," approximately 2 years after the corresponding year.

The final elaboration of all the related data is done later,
and the final values of the coordinates of the pole, x,y, are
published.

Both the final and temporary values of the coordinates of
the pole which are computed by the International Polar Motion
Service are published with much delay, and therefore it is
impossible for them to be used for the:present needs of astronomy.
In order to avoid this difficulty, the "Service Internationale
Rapide des Latitudes" was founded in 1955; it computes and
publishes the temporary values of the x<,y coordinates of the pole /18
for the next month. For this purpose, the service, which is
located in Paris, uses the results of the determinations of the
astronomic latitude and of other astronomical observations
related to time as well, Which are carried out in 68 observa-
tories distributed over the whole surface of the Earth.

Ino 1965, the "Service Internationale Rapide des Latitudes"
merged with the International Time Office (Bureau International
de l"Heure) which is also located in Paris.
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This office publishes the monthly journal "Bureau Inter-
national de 1'Heure, Circuloire B/C," in which, among other
things, the temporary values of x,y are contained, and also
the predicted values of the x,y coordinates of the pole.
Specifically, in the issue of this journal which circulates
at the beginning of the month m + 2, the following are con-
tained, among other things:

1. The temporary values of the x-,y doordinates of the pole
for the month m, which are computed on the basis of observations
made during that month.

2. The predicted values of the x,y coordinates of thepole for the month m + 3, which are computed by means of extra-
polation of the known polar orbit until the month m + 1.

In other words, we see that the temporary values of the x,ycoordinates of the pole that are given by the International Time
Office are published with a delay of only a month, and thepredicted values refer to the month following that of publication.

The temporary values of the x,(y. coordinates of the polethat are computed by the International Time Office are published /19
in another journal also, edited from the same office, the
"Bureau International de l'Heure, Circuloire D." Finally, a
detailed description of the methods used for the computation ofthe temporary values of the x,y coordinates of the pole andalso improved values of these coordinates are published 6 months
after the end of the respective year in the annual journal
"Bureau International de l'Heures, Annual Report," edited
by the International Time Office.

3.2. Definition of Frames of Reference

In order to study the phenomenon of polar motion, we willhave to define a frame of reference with respect to which we
will obtain the instantaneous coordinates x,y of the instan-
taneous pole at each moment. In Chapter 2.1 we saw that in
order to study the motion of the instantaneous pole we define a
certain position of it as the basis of a frame of reference,
and we compare the consecutive positions of the instantaneous
pole with respect to the defined basis. In other words, an
arbitrary position is sufficient to be defined as a basis.Of course, among the infinite positions we will choose the one
that serves our purpose best.

For the choice of this positionand the corresponding frame
of reference, we observe from the first that because of the fact
that the dimensions of the orbit of the pole on the surface of
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the Earth are very small (in an angle 1" with the center of
the Earth's mass as a verltex,. an are of about 31 m length
corresponds on the surface of the Earth), we can assume in a
first approximation that the polar motion takes place on a
plane tangent to the surface of the Earth at a point A properly
chosen. If we also choose on this level a proper Cartesian /20
coordinate system Axy having an origin in the point A, then in
order to define the position of the instantaneous pole r at
each moment, it is enough to give the Cartesian coordinates x,y
of the point r with respect to the system Axy.

The best solution, of course, would be to choose as point A
the point where the principal axis of inertia of the Earth
intersects the surface of our planet. However, the position of
the principal axis of inertia of the Earth within its mass is
not exactly known. Moreover, this axis is continuously changing
position within the mass of the Earth because of continuous
distortions of the masses in the interior or on the surface of
the Earth, which have as a consequence corresponding distortions
of the inertial moments of the Earth. Because of this, we must
find another way of choosing the point A.

The way to choose the point A has repeatedly changed in
recent years. Thus, a frame of reference called Wauach 1900-
1905 was used up to 1959.

Then point A was chosen to be the mean position of the pole
during the time period 1900-1905, and the frame of reference
defined this way was called the New System 1900-1905. At the
same time, however, certain astronomical services were using a
different frame of reference, having as the origin the so-called
mean pole of epoch.

After the decisions of the recent general conventions of
the International Astronomical Union (Prague,. 1967) and of the
International Union of Geodesy and Geophysics (Switzerland, 1967),
a new way of defining A is now in use since January 4, 1968, and
the thus-defined point A is known under the name Conventional
International Origin, abbreviated C.I.O. or O.C.I.

The conventional international origin is defined in such a /21
way that the corresponding values of the astronomical latitudes
of the five international observatories of latitude operating
today are equal to the values of the astronomical latitudes of
these observatories that were used by the International Polar
Motion Service in the year 1967.

Notice that the position of the conventional international
origin on the surface of the Earth coincides with the origin
of the new international frame 1900-1905. This is because the
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origin of the new international system 1900-1905 is defined to
be the mean position of the pole during a certain time period
(1900-1905), while the conventional international principle is
not related to the position of the pole during a certain time
period, but is defined by means of the values of the astro-
nomical latitudes of the International Latitude Observatories.
Therefore, if we need to reconsider in the future, for any reason,
the values of the coordinates of the pole during the years 1900-
1905, then the position of the origin of the new frame of
reference will change, while the conventional international
principle will remain unchanged,and therefore it will coincide
with the origin of the new frame of:reference 1900-1905.

The directions of the x,y axes are chosen in such a way
that the x-axis is tangent to the meridian of Greenwich and
its positive course is pointing toward Greenwich, and the y-axis
is perpendicular to the x-axis and its positive course points
toward the corresponding meridian at the value of longitude A = 900.

With respect to this system, the temporary values of the
x,y;coordinates of the pole are computed and published, starting
from January 1, 1965, by the two international services, that is
the International Polar Motion Service and the International /22
Office of Time.

However, for the computation of the temporary values which
are published by the International Polar Motion Service, only
the observations of latitude which are made in the five inter-
national latitude observatories located on the 3908 ' parallel
are used, while for the computation of the temporary values
that are published by the International Office of Time, both
the observations of latitude and those of time which are
made in the 68 observatories that cooperate with this office are
used. Therefore, the temporary values of x,y that are published
by these two services do not, in general, agree. In any case,
the differences occur partially because of the difference in
methods used by the two services,for the correction of the
systematic errors of the observations and calculation of the
x,y values.

Notice that the results of the observations made in the
above-mentioned 68 observatories cooperating with the International
Office of Time are also used by the International Service of
Polar Motion for the computation of the final values of the x,y
coordinates of the pole. Obviously, because of the variety of
instruments and methods of observation used in these 68 obser-
vatories, this material is much'less homogeneous than the
total given by the observations made in the international
latitude observatories.
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3.3. General Method of Observation

The determination of wobble (general disturbance) includes
precise measurements of the latitude according to the figure
in Paragraph 2.1. The meridian civile gives the fundamental /23
method for the determination of latitude. The instrument
we use is a telescope which can rotate around a horizontal
axis and which is oriented from East to West.

Let Zn be the value of
zenith distance at the upper
culmination (uc) and Z, be,

7 I the value of zenith distance
at the lower culmination (1c)
12 sidereal hours later. We
shall obtain:

L Z= /)

where e = 90 - 4 , p = 90 - 6
(co-declination).

n 0The above method is known
as the fundamental method of

N' determination of latitude and
declination because the value
of one of these is obtained

Fig. 1. independently of the other.
This method has the disadvan-
tages of the upper and lower

aiming of the same star. In other words, we must work with
stars which are always visible, and these must be such that they
have early upper culmination, so that we will be able to observe
them at the lower culmination in the early morning hours. This
can be more easily done during the winter, when the nights are
longer. However, this is one more disadvantage for the obser-
vations. This method consists of calculating the difference /24
between the almost equal zenith distances of two stars that
pass from the meridian a few minutes apart, one of them north
and the other south of the zenith, and not far from it.

The angle e is connected with the two crossings with the
meridian, having the relations 0 = p' + Z', = p - Z (Fig. 2).

From these, we conclude that

13



The value of the difference (Z' - Z) can be-measured, and
the declination of the pair of stars can be known. Talcott's
method is not a fundamental one. However, it is the most
commonly used because of the following advantages:

1. The use of zenith stars reduces the optical diffraction
error. This follows from the formula of diffraction.

2. The computation of the small angle.(Z - Z') by the use
of a micrometer is much more precise than the calculation of
ZU, ZL from a graduated circle.

The zenith telescope is the classical instrument in Tal-
cott's method. By aiming from an exact horizontal plane (disc),
the telescope is set in the proper zenith distance for the star
which first approaches the meridian. When this star passes
the meridian crosshair, its distance from.the center of the
cross is measured by a micrometer (great advantage). Then,
the telescope rotates 1800 around a vertical axis so that it
points .north of the zenith. Of course, if it were pointing
north before, and if it is necessary, the telescope is set again
until the plane (horizontal disc) becomes horizontal. The
important thing is that the angle between the horizontal disc
and the telescope must remain constant. Then the telescope /25
(i.e. as long as the angle remains constant) is set at the
same zenith distance as before, but on the opposite side of
the zenith. The micrometer measurement is repeated for the
second star, and comparison of the two measurements gives the
value of (Z' - Z) without the need for dependence on a graduated
circle (the vertical disc), but only on a smaller displacement.
In other words, the main advantage of Talcott's method is that
we do not use the graded disc but only the micrometer knob.
This way, we avoid arbitrary errors of division and reading.
Obviously we will have errors of the micrometer knob, which
will be mentioned later in more detail.

Another important advantage of Talcott's method is the
elimination of diffraction because of the value obtained.

Moreover, this method makes many more stars available
for observations, and finally, it does not require a star
that culminates very near the zenith for equal accuracy. Some
alterations have been made on the zenith telescopes. The
horizontal level in the photographic zenith tube (PZT) (cylinder)
has been replaced by a free mercury surface by which the image
of the star is reflected on a photographic metal-coated plane
which rotates around a vertical axis. We take several exposures
of the single star before and after rotation when the distance
2Z between the images is computed by a "teasurement machine."

14



The complementary latitude e (co-latitude = 90.- ¢) equals
p ± Z where the zenith distance has the (+) sign if the star
is north of the meridian, and the (-) sign when it is south
of the meridian.

The impersonal astrolabe is based on a completely different
method from that of Talcott. A ray coming from a star and a ray /26
reflected on a mercury surface enter the lens of the telescope
through a 600 prism, making two images. When the two images
coincide, the zenith distance of the stars is 300 (Danjon,
1958). Determination of time and latitude are dependent on
each other and the knowledge of the right ascension of a star
is required to be added to the declination (methods of latitude
determination). The above does not hold for the photographic
zenith tube (PZT).

3.4. General Methods of Reduction

The arithmetic value of the disturbance (wobble) is on
the order of 0".1. The probable error of observation of a star
is on the same order. Therefore, for studying the wobble, we
must limit the probable error of observation. About a thousand
observations were done monthly in a station, on the average, so
that the probable error was determined to be about 0".01, pro-
vided the errors were just random. A comparison between the
latitude observed in Washington and the results of the I.L.S.
stations showed a difference on the order of 0".1 (Fig. 7.4).
These and other proofs showed that there are significant systematic
errors.

Reduction from the I.L.S. stations follows a certain
process. The main difficulty is due to the pace of the micro-
meter knob and the declination of the star under observation.
Nothing is known a priori with satisfying precision for reduction,
and in the final analysis, the latitude observations give infor-
mation for the various corrections. The corrections of the pace /27
of the knob include an annual term which can be as wide as the
annual motion of the pole. Melchior (1957) thought that the
accuracy of the observations could be known in geophysics from
the accuracy of the pace of the knob.

In order to make the errors due to the pace of the knob
smaller, the group of latitude stars (which are arranged in
Talcott's pairs) is chosen in such a way that the sum of all
the small measurements in a certain night is the smallest possible.
Unfortunately, the coordinates of the latitude stars are so
influenced by precession after a decade, and some of the stars
from the Talcott pairs are so unsatisfactory, that they must be
recomputed. Changes in the catalogues were made in 1912, 1922.7,
1935 and 1955. In Cohn's catalogue, which was used from 1899
to 1935, some declinations were known to have an error.

15



The most accurate catalogue is that of Boss; it has been
used since 1935, but it also includes some errors. Finally,
the number of stations has changed from three (1922.7-1935) to
six (1901.7-1906).

All these changes have obviously caused some inhomogeneity
in the observations.

The final coordinates which are published with a few years'
delay after the temporary coordinates include corrections for
the pace of the knob and the declination of the stars and,
according to Melchir, the temporary coordinates are more trust-
worthy than the ones obtained after correction.

According to the I.L.S. notes, the estimated reduction to
(90 - 4), i.e. Aeu from a station u west on a longitude Xu is
given by the relation: /28

where x(Em l ) is the displacement of the pole of rotation toward
Greenwich, y(=m2) is the displacement along a direction 900 west
of Greenwich and Z is the correcting term which was introduced
by Kimura. The coordinates x,y and Kimura's term Z are deter-
mined by the method of least squares on the aeu (difference) of
the latitude observations in all stations.

The physical meaning of Kimura's term, of which the absolute
value is not more than a few tenths of a second of an arc,
remains unknown. Kimura's term has a polar change in latitude,
i.e. as if the latitude were increasing or decreasing the same
way in all I.L.S. stations. Usually this change is on the order
of 0".03. This term eliminates errors (1) in the Values of
the motion and declination of the stars underobservation, (2)
coming from the fact that we do not take into consideration
differences in these stars, and (3) of the fundamental constants
of astronomy (nutation, annual reduction, oblique course, etc.)
The term does not disappear if we substitute the PZT for the
zenith telescope.

It has been observed that the term Z(t) tends to have the
same point in both hemispheres. (Kimura's latitude reductions
have the opposite sign for the northern and southern hemisphere.)
This is the expected difference from a displacement in the center
of mass of the Earth, for example, for a seasonal flow matter
vertically to the equator. This problem requires further study.

The rest of the changes that are not correlated among the /29
stations are called "local Kimura terms" of certain direction.
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The latitude computation is relatively easy, except the
correction above, and is given by the formula

The local change is correlated with wind, pressure, and
other meteorological changes. The optical diffraction is
minimized by the use of zenith stars, but this zenith diffrac-
tion can give wrong-results. It is useful at this point to
distinguish the "room diffraction" which is connected with the
conditions of the immediate environment around the telescope,
and with the whole atmospheric diffraction. Pzzbyllok (1927)
compared the latitude measured in the Washington Naval Obser-
vatory with that determined by I.L.S. After that, he computed
the reduction and compared it with the local wind direction, and
he found that during a northerly wind, the latitude of Washington
increased by 0".02, while during a southerly wind, it decreased
by 0".02.

He attributed this difference to the "room diffraction."

Pzzbyllok suggested that the monthly values at the stations
could have an error on the order of 0".25, while the annual
values could have an error of about 0".1 (!)

During the last 2 years of research at the original
Tschardyui station, the average latitude was found to have
a change on the order of 0!'".. Lambert (1922) attributed this
abnormality in the observations to the diffraction caused by
change in atmospheric conditions as, for example, the displace-
ment of the Amu Darya River from its former position about,3,,km /30
toward the station.

It had been expected that under normal conditions the
seasonal diffraction change would have been eliminated by Kimura's
term, and that the relation between room diffraction and the term
Z would have been found. There is, however, no guarantee that a
significant error due to diffraction does not remain in the
computed annual latitude change. Also, a tendency t'o change
can exist in the mean term of the zenith distance accompanied
by a change iniclimate during the 20th century. However, this
requires further study (as does sideways diffraction).

Of course, the use of some small astronomical results is
permitted for the determination of latitude. These include
Battermann's result for the oblique course and small nutational
terms due to the disturbance by perturbation of the Earth's
orbit caused by Saturn and Jupiter. The declination is also
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influenced by the wobble of the rotational axis with respect to
the fixed axis (thefixed axis in space if no external torque
exists).

Every geophysical phenomenon causing wobble should be
connected not only with latitude change,' but also with declina-
tion change.In the computation of latitude, according to
Talcott's formula, the declination is not corrected for wobble
(sway) but wobble (sway) is dependent on the change of lati-
tude with time, and the precession constant H (=0.003) is
insignificant. Chandler did experimental research on sway,
but he could not detect it. "The comparison of the absolute
and the different definition shows that the phenomenon refers
completely to zenith change and is not separated in a change
of the zenith and of the astronomical pole (at the same time)." /31

Concluding the chapter on generalities, we can observe
the following about the needs in observations:

1. The Kimura term has not been investigated fully enough,
so we do not know what it depends on and ihow it acts. From
our hypotheses, the seasonal change of diffraction should be
eliminated by the Kimura term, and the relation of this term
to the "room diffraction" should have been found. This has
not been achieved, and requires further study.

2. Besides the Kimura term, the concept of "local Kimura
terms" was also introduced, terms that are generally dependent
on local,,meteorological changes. We have shown that these
changes have sufficiently large values. Therefore, the results
from the stations to be compared should be reduced to similar
conditions. Besides this,and the examination of "room diffrac-
tion," the problem also depends on general meteorological change
in a place, due to changes in conditions, e.g., a displacement
of a river or a change in climate with succeeding centuries.
This also needs further study.

3. Within the above framework, the general problem of
"optical diffraction" appears. In other words, we deal with
the general problem of diffraction, which is of interest,
examined either as general atmospheric diffraction or as "room
diffraction," and there is much research to be done on this,
because of the phenomena of magnetohydrodynamics in the last /32
layers of the atmosphere, which are believed to affect optical
radiation. Finally, the problem of sideways optical diffraction
always exists.
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5 z 5 4. We have already men-
S , tioned that some displacements

in the center of mass of the
Earth are believed to be of
physical causes, from the term
Z(t). In other words, the

B relation between the core and
o ,crust requires deeper study

and examination and is of
decisive importance for the

I , whole problem of polar motion.
So we see that there are still

, some unsolved problems. The
positive research for answers
gives a measure of the approxi-

Fig. 2. mation of the values found.

5. We should also regard with some skepticism the homogeneity
of the static analysis of all stations, since each one has some
geophysical errors. For example, take the phenomenon of earth-
quakes that is more common for the area of Mizusawa and less
common for Ukiah and Carloforte. Also, other, more general
phenomena such as the change in the flow of a river, vegetation,
large technical construction, etc. must be taken into account.
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4. DETAILED DEVELOPMENT OF THE METHODS OF CORRECTION AND
REDUCTION

4.1. Introduction

In this chapter we shall study in detail all the methods /33
that are used for the observation of stars and the reduction
of the results. Together with development of the methods,
examples and tables will be given, so that this chapter will
constitute the basis for further study. After these, the orbit
of entering quantities of the pole will be given in a figure,
with respect to the new system 1900-1905, which coincides
with the CIO for the time being, and the motions of the pole
will be given as a summary, which constitutes the final purpose
of this work.

For the study of the methods, information is given for
the final results of the first volume of "Annual Report." This
volume includes the results of the latitude observations
obtained during 1962 in the stations and observatories connected
with the International Polar Motion Service, but it does not
include the results of the time observatories which refer to
polar motion. We describe below the results from 32 stations,
i.e. five I..L.S. latitude observation stations, and 27 other
stations with 32 instruments.

This study can be separated into the following chapters:

The first chapter, that includes descriptions of the
original information given from the five I.L.S. stations and
the methods of reduction used by the Central Bureau. This
same chapter also includes the results of the latitude check
for the five I.L.S. stations according to the information of
the Scientific Council of IPMS. /34

Chapter 2 includes brief descriptions of the results f~om
the latitude observations obtained in the independent stations
and sent to Mizusawa, or the results published in the "bulletins"
of the related stations, together with the differences between
the observed latitude and the computed one.

The coordinates of the pole are obtained by using the
available information from all sources. Also, they are studied
so that they become more appropriate for the computation of the
coordinates of the pole, in accordance with those already
obtained by the I.L.S. In coordinating the results of the inde-
pendent stations and those of the five I.L.S. stations, some
problems seem to exist which must be solved, such as the
determination of the mean latitude in the new system 1900-1905
of I.L.S., the use of Kimura's term Z, and the comparison
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of the star catalogues used by the respective stations. Because

of this, the determination of the coordinates of the pole was

defined in accordance with the new system 1900-1905 of the
I.L.S. only by the results of the five I.L.S. stations.

4.2. Chapter 1: Results from the Five I.L.S. Stations Lying

on the 3 9 08
' North Parallel

4.2.1. Star Catalogue and Program of Observation

During 1962, the first IPMS year, the following five I.L.S.

stations continued the same observations of latitude,with the

usual zenith telescopes,l from the previous year:

Mizusawa, Japan x = -9 h 2 4m 31s

KitabUSSR A= -4 h 2 7m 21s  /35

Carloforte Italy x = -Oh 3 3m 15s

Gaithersburg, Mar., USA A = 5h 8 m 48s

UkiahT USA 8 h 12m  50s

No change has been made in the program of observation and
in the stars taken in 1955. The catalogue includes 144 stars
and forms a total of 72 pairs which are arranged in 12 groups,
each of which includes 6 pairs and occupies 2 hours of the
right ascension, as is shown in Table 1. The stars have been
placed in order according to the general catalogue of Boss.
In placement, the centennial changes are given, and one half of
the centennial changes of the annual changes, i.e., the changes
of the centennial changes. These will be denoted as CV (cen-
tennial changes) and SV (eternal changes). The same motions
are given for 1 year. For the right ascension, 100 values of
the annual change and 50 values of the eternal change are given
in the general catalogue of Boss, and also CV and SV for 1950.
The CV and SV for the declination are computed by.,. the follow-
ing formula:

= dT- = 0 * O0"...

d ,' S-07 17.O' 2
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TABLE 1. MODEL OF STAR CATALOGUE OF I.L.S.

Group Paint .  Right ascensio Annual Eternal 3rd Teim Declination Annual -Eternal 3rd T.ermnroup Pai, Chance Change _ eo Change Change

37 /5273 6.5? 9S 44 .04" 0?.@ 44 317 9 - 0.565 a 011 0.0046 (80 to' 29.26 -1948 6o3 -5 .485 0.02Z 0.o4

1542 6.66 S A5 "43 22. o9 353. 96 -3.375 .063 - oo53 So 12 56 71 -1964. 128 -4.785 .d0 .657

38 /5s24 6.56 0o 44 £9 32.-s9 320. 45 -f-f5 .o +. oool 36 34 25.f90 4989.,95g -2.670 o -2 .4

1605o 6. . 65 fI 4o 58.7o/ 3/7. 48 -f.3fo .022 . eo48 42* oo' 00o05 4198. 759 -1. 495s .,# -. 69

39 /61f9 5.71 F5 4 47 o6. oe 341. d -1. 025 .07 -. 00 4 35 ' 0 3427 -'2oo4.285 -. O .s. j1 -. (

/6/45 5.07 A3 41 5? 34.96 3o4. 6t -f.2?d .023 .0295 430 19' 22.163 -997.555 e .38 .s -.1.6

40 /676 .oo K2 42 .15 of 1o 2?5. 8 -1.726 .034 +.0038 53' 28' oP?.6 -7005.348 4.840 .40 .iez

184 6.0o2 - Ao / 19 0 ./0 3o01. 51 -0.520o . -. 4046 25 o3' 403fo -(f998.282 2.365 ./

41 /05. 7.o4 4A 1P 24 09.452 287. o7 -/.705 .036 4. 0/5 55 26 ' 09'65 -1992.034 2. 625 .0o -. 252

/7224 6.47 K0 /2 36 35.487 292 9P -0.390 .0/2 -. 4036 22' 56' o3'4/ -J970.744 3. st5 .00 .O49

42 17329 6.34 F5 12 42 05.730 283. f1 -o.,95 .d24 -. 0026 44" 34 57 -f9s.0-24 4.185 -. 02 -.33

17517 4.2 A2 /2 51f q.893 2B5. S -o.605 .014 -. 0077 33 48' f7.57 -f1931.0 7 5.05 -. o -. 06?

S43 17767 d.o4 F5 13 03 55.oo3 292.34 -0.24a .p; - .9055 21/ 25' 16'?2 -191o. 612 6.265 -. 02 -. *'

179if 6.74 G /3 1/ 34.420 245.53 -1.o .024 4. 05s 3 6 28' 22'47 -4845.24o 5.935. -. 0 -. OO
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where ao and So are the right ascension and the. declination for
1950.0 which are given in the .General Catalogue, and mo, no,
(dn/dT)o are the centennial values for 1950 which are computed
by the following formula.,given earlier by Newcomb.

=P 4 <SO 2'79 -1 7,-'o/012T 2  /37

7 = 2004 - :'533 7'- ,oO37.-2

017- _:8533 - :'eoa 7/ T

where T is measured in. tropical years from 1900.0. The arithmetic
values of m, n, dy/dT for 1950 will be:

dT

Applying the above values of the changes of CV, CS for the
catalogue, we will have the fact that the mean positions of the
stars for any other epoch t are computed by means of the following
formula:

a,, = 'o ,"/' S ' jZ (3rd term)~ Z'

= * 7j + C (5 s, ) / (5 rd term z'

where t is measured in tropical centuries from 1950.

The duration of the days of observation for every composition,
consisting of three consecutive groups which are symmetrical with
respect to midnight, was a month. The groups were observed during
the following periods:
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la ,, F 5 -s zF _z7 .7a Z 7 - Aur 5 _Z - .Xr -. 17

/2a Z - -ep 6 - c/ ZZ - D2 -

1,4 7 - 22, -iz-.27 &c 6 - --oY 5 1- -12

i ~ 7 -J 7v 6 2ZT-ZZ -. /o 6 & - D ec 6 Z -.i -.f

7, - ) 6 -- "- -Ya'¢ 5 --- '-

4.2.2. Static Analysis of the Observations /38

14,679 pairs of stars were observed at the five I.L.S. stations
during the period from January 6, 1962, to January 5, 1963. The
monthly numbers together with the values of the nights of observa-
tion are given in Table 2.

4.2.3. Correction of the Telescope Errors

The telescopes were well arranged and no correction was referred
during 1962. Certain errors of observation are shown in Table 3.
The values of the inclination of the horizontal axis ic and iw are
the mean monthly values from every night in 1 month in the unit of /39
time (sec) , except for Carloforte, for which the values are
given in the unit of division of the horizontal disc. In Gaithers-
burg, one special arrangement was invented for the elimination of
the sideways bending of the telescope by raising the telescope
from the horizontal axis by a quantity equal to the bending.
Therefore, the values of inclination for the same number are more
regular and more comparable to the ones of other stations. This
method was proved by E.L. Williams in 1932, and it has been used
from that time on in Gaithersburg.
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EXAMPLE: TABLE 2.

o,' Itsawar. / tla6 C 6oded Caitbaer /t

/962 #,Aft Palit I/if 4  Pair dibA pair

ayr. /3 /o2 2 If

e. 1 107 9 5

aCt. // /4I f 107

ApI. /f 2(6 5 89

Afa /Z /76 9 147

3y. / /82 o 3(5

"' ,4 /21 2o 326

Ak. l 23 385

Sebt /4 f/f if 287

5tc. f 157 /0 n 34

#or. /4 (34 f 4

Dec. /3 /62 . //63

Total" 168 (737 f4f 220/
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EXAMPLE: TABLE 3.

Af/utzucarwa /9(2

Inclinaticin -Date of Bending --Aiming Azimuthl

SAfor i -w Observatk y ,

21 q 2,7 , 8 ,o 407

CiVIA erbur /£62

Inclination

Before the .After the
Observation Observation

i e i i'e w ,

rI,- .,' _4

A further explanation of the errors of inclination in aiming /40
(direction) and of azimuth is required in order to understand the
corrections of these errors.
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4.2.3.1. Errors of Inclination

An error of inclination is caused because of the nonhorizontal
axis of rotation of the telescope tube. The inclination i of the
horizontal axis of the telescope tube with respect to the horizon
has an influence on the exact time of observation of the culmina-
tion of a star. We shall try to explain this influence.

Suppose that we have the
z celestial sphere, the equator and

n the points of horizon A, B, A, N.
The horizontal axis does not lie
on the horizontal plane. If we
aim with this axis ,at the point A/ on the east, the axis actually

Ka would pass from A' X A so the
inclination of the horizontal
axis will be (AA') = i (ZZ').

A' Therefore, the optical axis of
the telescopeztube rotating around
the horizontal axis,. instead of
describing the meridian, will
describe a great circle through
the points B', Z', N having as a

pole the point A' (point Z' is east of point Z).

Therefore, if we aim at a star, we will take as time of
culmination the time at which the star is passing from the
meridian of the instrument. The meridian of the instrument is
different from the meridian of the place of observation, and the
star will culminate in less time than the time it needs to
describe the arc (EE'). We draw the hour circle from point E'.
This circle intersects the equator at a point K'. We will have:

(Cz') = (KK') cos 6 but ('EI) = (ZZ') cos ZE (1) /41

So (KK') cos 6 = (ZZ') cos ZE = i cos ZE (2)

Relations (1) follow from the ratios.

It is also true that

(KK,) cos 6 = i cos (4 - 6)

So the arc (KK') expressed in time is given by the formula
(KK') = i cos (€ - 6) sec 6.
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This formula gives the correction from the. error of
inclination i which we have to apply in order to bring the
observation from the meridian of the instrument to the meridian
of the place of observation. Exactly this error is given by
components on the previous table, so that we will correct our
results, eliminating errors caused from the nonhorizontal
position of the horizontal axis.

4.2.3.2. Errors of Aiming (Direction)

This error is defined as the difference of the angles C
between the angle of the optical axis of the telescope tube and
its horizontal axis and 90.P. That is, this error is due to the
optical axis not being perpendicular to the horizontal axis.
Because of that, the optical axis will, during the rotation of
the telescope tube, describe a small circle N'Z'B' parallel to
the meridian of the place of observation and lying farthest
east of it.

Suppose we have the
S z celestial sphere, its equator

II' and the horizon. We will
17 have:

I x (NN") = (BB') = (ZZ') = C

/Therefore, when we aim
at a star and see it in cul-

- mination, the star actually
is culminating on the meri-
dian of the instrument and /42

S \ not on the meridian of the
place. Because of that, a

no correction is needed to
n reduce the meridian of the

instrument to the meridian
' of the place of observation.

If E, Z' are the points of
culmination of the star on
the meridian of the place

and the meridian of the instrument, respectively, then the time
which is necessary for the star t6.1 describe the arc (ZE') gives
the time before which the culmination will occur. In order to
find the necessary time for the star to describe the arc Ez', we
must find the hour angle of E'.

For this purpose, we write the hour circle of E' which
intersects the equator at the point K'. Then we will have C =
= (Cz') = (IK') cos 6. Therefore, the arc (IK') = C sec 6, and
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it gives the correction which we have to apply in order to
find the moment of crossing the meridian of the place.

4.2. 3 .3. Errors of the' Azimuth

The error of the azimuth is defined as the angle 6 between
the optical axis and the meridian which can be formed because
of noncoincidence. If we take the east end of the telescope
tube, this will result in that, instead of intersecting the
horizon at the point A, it will intersect it at another point A'.
It will be (AA') = e. During its revolution, the optical axis,
instead of describing the meridian of the place of observation,
will describe another great circle B'ZN'.- Therefore, as the
moment of culmination we will not consider the moment at which
the star drosses the meridian of the place, but the moment at
which it crosses the meridian of the instrument. The arc ZZ'
gives the time interval during which the culmination will be
observed earlier. (It must be noted that the describing of a
great circle is a difference in order to avoid confusion with
the error of aiming.) Here the axis is perpendicular, but it
forms an angle.) /43

.(, As ,with the lprevious,,
T z errors, in order to determine

Sthis time we consider the
hour circle of point Z',/

We will have:
\ A

S,, (EE') = (KK') cos 6

= cos

however, (zE') = (NN") cos NE =
i' = 0 sin (4 - 6).

Therefore, (KK') =
N' 6 sin (0 - 6) sec 6, where the

arc (KK') is expressed in time
and X is given with component
(e east, 6 west).

If we assume that the above errors take place, which is
true, the total correction which we must apply will be (Mayer
formula):

E = C seci.6 + i cos (4 - 6) sec 6 + 2sin (4 - 6) sec 6

If we develop the sin(C-6), cos (p-6) and put
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K = i cos€ + Xsin E = K + AtanS + Csec6 (Bessel)
A = i sine - Acos

From the above formulas, consequently, we have the fact that
in order to avoid the errors of the instrument, we prefer to aim
at stars which have a small value of declination.

In the above manner we correct the observations, if we take
into consideration the error due to sideways bending of the instru-
ment.

4.2.4. Atmospheric Terms

The atmospheric terms are usually measured every hour at
the time intervals of the latitude observations. These are
summarized in Table 4. Abbreviating all the mean monthly values
for every group, that is, nightly values, morning, and inter-
mediate, are .arranged in the table. The atomic hour values of
Tex, Ttel and B were used for the determination of the diffraction /44
and the correction of temperature for the constants of the instru-
ment in the conversion series. We distinguish the following
quantities:

nTex, sTex External temperature in centigrade with respect
to the north and south side.

Tex Mean value of the above two quantities

ATex Hourly change of Tex.

nTex - sTex Change between external temperatures, north minus
south.

nTin, sTin Internal temperature with respect to north and
south side.

Tin Mean value of the above quantities

nTin - sTin Difference between internal temperatures, north
and south

Ttel Telescope temperature

Tex - Tin Difference between external and internal temperature

Tex - Ttel Difference between external temperature and
telescope temperature.

Tin - Ttel Difference between internal temperature and
telescope temperature.
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Bi Barometric reading in mmHg corrected fore both
the temperature and gravity at Mizusawa and
Ukiah, but only for temperature at Kitab, Karlo-
forte and Gaithersburg.

AB Hourly changes of B

SE Disturbance of the scale images (1-4) (better-worse)

ST Stability of the scale images 1-4 (better-worse)

W.V. Velocity of the wind near the telescope in m/sec

W.D. Direction of the wind estimated on the right-hand
sidd from North

NS - comp Mean value of the component of the windv(elocity /45
from N -+ S during the observations.

EW - comp Mean value of the component of the wind velocity
from E -> W during the observations.

Humidity Relative humidity during the observations

The following example has a sample of measurements and cor-
rections of the above magnitudes at Mizusawa in January, 1962.

MIZUSAWA, JANUARY 1962.

Group 7 ey s Te7e x d 7ex 7re-s ex

- e e 7 e z - e Z - e .3

-2,-d2 -3f79 -3~i 2, -391 -3091 267 0.37 0f1

e i e- 7 e z e 7Z
-26 3J,7f -3'7' -- -O5 -O,a2.
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.dI;7ie / TeA--

Summarizing what has been said up to now, we note the
following:

1. In order to eliminate the errors, working and using
Talcott's method we observed 72 pairs (144 stars) which we
separated into 12 groups (each group has six pairs). Each
month we observe three groups, so that by finding the mean
values of a group, we eliminate random errors.

2. We correct our observations f:ori the instrumental errors. /46
These corrections were defined, justified and applied so that our
results will be corrected and ready for reduction.

3. The various atmospheric terms were described, as well
as the magnitudes which they produce; we take these into con-
sideration during reduction. Therefore, we can now develop
the methods of reduction of the observations.

4.2.5. Methods of Reduction

The individual values of the latitude observations were
computed by the formula:

where 6, Z are the apparent declination and the apparent zenith
distance of the star. The indicators..n and a show the north
and south stars of the pair. The apparent declinations of the
stars were computed up to 0".001 (thousandth of a second of the
arc) by the following formula, where the correction for the
small amount of second class terms was also taken into con-
sideration:
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K_4C. su, /'f.L sp ?et-s ec -S--c C O.r 0 1 S-I. ,, Y

2 ;

+ c'D 511 a"r-q ssir . -. 104st. . fzsa2/ .Co sx .+Cos ,)4

where at, 6t are the mean positions at the closest beginning of /47
the Bessel year t, which is measured intropical centuries from
1950.0. r is the epoch of observation, measured in tropical
years from the closest beginning of the Bessel year t, and not
exceeding half the year. p' is the proper motion in declination
given in the star catalogue. a', b', c', d' are the constants of
the star in right ascension at the closest beginning of the
Bessel year t.

et is the mean obliquity of the ecliptic determined by the
formula:

and m, n are computed by the relations already given in 4.2.1.

It is noted that we use the linear form of transformation
formulas appropriately reformed, because we are computing the
apparent positions of the same stars at specific instants, so
the values of a', b', c', d' will remain constant for all cases, and
onlyithe computation of the respective Bessel numbers A, B, C, D
is necessary. Among. these, Cand D were computed by the follow-
ing formula, instead of the values which are given by the astro-
nomic ephemeris.

f=+: s a p-i l yo _ , o s53)e +j a 'a o9 n th 3
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where xo, y are the components of the velocity of the Sun refer-
ing to the ?rue equator and to the equator of the. date. x, y
are the components of the center of gravity of the solar system.

It still remains to examine the reduction of the differences
in zenith distances, in order to apply the general formula. The
difference in zenith distances Of a pair of stars is computed
by the formula:

+ 1/2 (plane of correction) +

+ 1/2 ((spherical correction) /48

+ 1/2 (differential refraction)

where M is the micrometric constant, that is, the value of one
revolution of the micrometer in seconds of arc. This has to be
known in order to be able to measure the revolutions of the past
revolution in seconds of arc.

a is the temperature coefficient of the micrometric constant.

Ttel is the temperature of the telescope.

R is the mean value of the bisected values in the unit of
micrometer revolution.

(IS) is the correction of progressive inequality (ascending)
of the micrometric knob.

(WI) is the correction for the inclination of the moving
eyepiece hair.

The indicators E and W give the positions of the telescope
east or west. For the above magnitudes, we must note the following:

(1) The micrometric constant and the constant of the plane
are used for corrections in the full extension of the Annual Report.
These values were taken from the "Relazione sull'Attivita del
Servizio Internationale delle Latitudini nel 1961, 1962" [Activity
Report of the International Latitude Service in 1961, 1962].

(2) The gradual ascending (progressive inequality) of
the micrometric knob is given in Table 6. .There is no correc- /49
tion applied for periodic ascension.
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TABLE 5. CONSTANT OF THE INSTRUMENT.

Station Micrometer (half turn) Posit ions
PStation Micrometer (half turn) lane I i Plane II

/M rzua rw /P" P72 - o"ooa30 rie (cj /"329 ,"i /7

IV," 0;6 ,"oa173 a "MoI I

ero/pore 1, 63s5 - , 030 :, 247

Cci/mAerP if, 8/'48 - o00o27 d3, 3'D0 /535

Mht a, P, 88o8 - 4/Ooo4 i/38 1,2057

TABLE 6. EXAMPLE (SAMPLE) OF THE ASCENDING OF THE
MICROMETER KNOB FOR MIZUSAWA AND GAITHERSBURG.

Revolution 0 L 2 3 -5 7

o .I/z'ihes :, (-o:::o -qaoo ' 611 617 4683 ,0215 4 2 3
-4o051 -124

(3) The spherical correction is computed for every star by
the formula:

where F is the isometric distance of the measured point from the
meridian in seconds. This is ±20 s and ±6 2/3, and they are taken
for all the numbers.

(4) The correction for the differential diffraction was
computed for every star by the formula:
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r ge= °' Ic lo77ex - SeC

where 60".154 is the constant diffraction.

Tex is the temperature in degrees of a hundred degree scale
during the time of observation.

B is the atmospheric pressure in mmHg during the time of
observation reduced to 00 C.

Z is the mean zenith distance of the pair which can be
replaced in the application by one half the difference of the
declination at the beginning of the year.

AZ is the difference in the observed zenith distances measured
in seconds of arc.

(5) The corrections for the inclination of the eyepiece
hair (WI) were applied to every single value of the micrometric
reading as follows; only when they were separated, that is, when /50
we had different values, 1, 2, 3, 4 indicate the sequence of
the values.

Bisecting (WI) Bisecting (WI)

" 13 ,- 3,6 2, 3, -1- - -33

(~ 3- (z 2 j,

i -,3,4 - - , - (t 3)

-, -(z. 4) -- L- (rz ) ]

The Ii, 12, 13, I4 indicate the corrections of every bisected
value in the reduced part of the star which are due to the inclina-
tion of the moving eyepiece hair. Each of the Ii values is
obtained from the bisected values of the latitude observations,
which are obtained during the 3',month period, and is given by
the following formula and used for the mean .for the 3 months:
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, ,/ ( a+1 (.)j  ( C

upper points: i = 1, 4 for Tel E, i = 2,3 of Tel w

lower points: i = 2, 3 for Tel E, 1 = 1,4 of Tel w

where 4= (r1 .Fz20 3

where i = positions bf bisecting 1-4.

j = numbers of the sequence of the observed stars 1 to n.

n = total number of observations

Rij-Rnj = relative bisected value of a star j

(Ri)j = bisected value of a star j at position i

Cij = spherical correction in the unit of the micrometer turn
of the star j at the position i = 1 and equal to C4j

C2j = spherical correction in the unit of the micrometer turn
of the star j at the position i = 2 equal to C3j

M = micrometer constant

4.2.6. Specific Values for Each Pair of Latitude Observa- /51
tions

The individual values of the latitudes observed at Mizusawa,
Kitab, Carloforte, Gaithersburg and Ukiah were computed with the
method described, and it is shown in Table 7. In the same table
the mean monthly pair .values are also shown. In the table, the
numbers 19, 20, ... indicate the numbers of the star pairs of
the corresponding pair.

4.2.7. Zenith Distance Differences

The individual zenith distance differences were computed
by the formula (1/2)(Zs - Zn) = K + corrections (plane, spheri-
cal, refraction) and were summarized for ev.ery pair and every
station each month.
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TABLE 7. SAMPLE OF INDIVIDUAL VALUES OF THE OBSERVED
LATITUDE.

49 10 ' 22 '25 26

Yay 2 39q. 3/677 3,"588 3,"/89 3,O8B 3;1877 4j20

P 3, 327

/8

17 - -. '<75

,d a~ 3, 377 3, 60oo 3,.o1 3,28 3,14oO 3, 80-f.

The monthly mean value of the zenith distance difference of
the pair and the mean value of the group in the unit of revolu-
tion of the micrometer knob is indicated in Table 8. This table
is given from Zs - Zn or RE - RW.

TABLE 8. SAMPLE OF MEASURED ZENITH DISTANCE DIFFER-
ENCES (IN MICROMETRIC TURNS).

January 1962 /52

!/ 20 21 ..... Mean 252

-4 67 -/l 43 8, 88

A' -/4,84 -18,2o 470 -445 -¢,57 -9,05

C -- - / -40,3o -9,75

G 6,; -zt - , -37

3 -/4,28 -/,6 ~9 -ooo -4.7.
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4.2.8. Mean Latitude: Values of a Group and Their Mean Epoch

The mean latitude value of a group was taken from the
monthly mean pair values which result from the individual
(specific) values of the latitudes as they are indicated in
Table 7. This derivation is shown in Table 9. The mean epoch
of the observations in 1 month was computed as the mean values
of the time of all observations and was measured in units of
tropical years from the beginning of the Bessel year. These
are indicated in Table 9 with the mean latitude value of the
group and the number of observed star pairs. Note that the"evening:?' "morning" and "intermediate" values are indicated
separately.

TABLE 9. SAMPLE OF HOW TO FIND THE MEAN EPOCH OF OBSER-
VATION, MEAN LATITUDE VALUE OF A GROUP AND NUMBER OF

OBSERVED PAIRS.

1f62, o7 3'33' 35 1962, a 6 3,"f y 32

, 152 3'375 48 54 3, 25

,933 3: 72 63 236

S3,123 71

4.2.9. Mean Latitude Values of a Group Reduced to a Common /53
Epoch

Every latitude station has 12 mean epochs of observation in
a year. Each of them is very close to each mean date of the
programmed duration of the month, but among them they are different.
In order to compute the coordinates of the pole, 12 common epochs
were devised at the five I.L.S. stations, as is shown in the first
column of Table 10. These were chosen so that they are very close
to each mean date of the month of observation, by dividing the
year into 12 equal parts.

The common epochs are invented for every year by a rule.
The OTUT on January 21, 1965, was indicated as the first common
epoch in i year, and was given in iunits of the tropical year
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measured from the beginning of the Bessel year. The mean
values of the latitude of a group and the mean ep-ochs referred
to them are indicated in Table 9 and are reduced to the closest
common epochs by linear interpolation or extension between the
two successive mean latitudes of the same group. The mean
latitudes of a group in the mean epochs are indicated in Table 10.

TABLE 10. SAMPLE OF THE MEAN LATITUDE VALUE REDUCED
TO THE MEAN EPOCH .(3908').

6e ict1,? Group- fl-aezMs- /{i a- e zr /0/a ce rcri dAov l

/, -le) 33 35 '5 7 , 8 /83e337 76

_U 6,/ 3, B 35 /,276 ,747 57 /3,294 76

X (el 0 37' ,3 g, df ?oF P

_/__3_ .7" 4 f7& 23 4 3 33

We summarize what was said in the previous two chapters: /54

(1) With corrections, we obtain the individual latitude
values for every pair of each group at a defined date of the
corresponding epoch (magnitude as the month).

(2) From the individual latitude values we take the mean
values of each pair. Each group is already referred to one
mean value of the epoch (approximately equal to that of the month).

(3) From the mean values of each pair we obtain (again with
the average) the mean latitude value. The group is again referred
to the mean value of the epoch.

(4) We reduce the mean latitude value ,of each group,which is
referred to one mean value of the corresponding epoch, to the
corresponding common epoch, common for the five I.L.S. stations.
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We will apply the above together for Mizusawa, for the
pair of Group IV for the epoch January 8 - February 5.

INDIVIDUAL LATITUDE VALUES.

__2_ 22 2 24

S3,677 3,"58 3,"/8Y 3,86 3,"672 2, 784

/3 3, 327

/7 -

23 3,351 3, 54 3,456 2,/4 - -

25 - 3, 9 9 - - 4, 7 -

27 475 49? 31o - 3,389 3, 32

29 , ,8 3,357 - 3, 632 3, 5?4 2,oo 00

30 3,864 3, 637 3, 424 3,544 - 2,877

/ 3, ~96 2, 948 2, ,7 3, 3 /5 3, 5/3 2, ,9.2 \<55

3 3,4 -

5 -

Mean values 3.377, 3.600,. 3.109, 3.298., 3.685, 2.952 of
each pair.

Mean value of the latitude of a group referred to the mean
value of the epoch 8/j - 5 /F = (1/6)[3.377 + 3.600 + 3.109 + 3.298 +
+ 3.689 + 2.952] = 3".338.
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Therefore, for the mean value of the epoch, we obtain,
for 1962, 3".338 (in the unit of the tropical year: from.the
beginning of the Bessel year. The beginning of the Besselian
year is when the sun has right ascension 2800 near 1/1.) The
duration of the tropical year is 366.242199 sidereal days and
365.242199 mean solar days.)

Already we can reduce to the mean epoch, so we will have:

1962.056 -- 3.342 (for group IV)

This result is obtained by linear interpolation of the
results:

1962.067 3".338
1962.152 3".375

Thus we find for the value 1962 - 3".342.

Note that when we refer to a certain group, we refer to
evening, morning or intermediate, respectively, because each
group is observed at a special time of day.

That is, f

so instantaneous x,4 corresponding to instantaneous 4 + xe = XlV ,

4.2.10. Determination of x,y and the Term Z /56

The coordinates of the instantaneous pole and the term Z
are computed with reference to the new system (1900-1905) of
the I.L.S. from the results of the five I.L.S. stations; these
are indicated in Table 10. The mean latitude values of the
corresponding stations defined in the new system (1900-1905)
and the loftgitude values finally taken are:

u ,-u-4Y 7"' 5t" 39" 8' 3,"62o

, L er'z6ed 77 - 7 13, 2az

42 g ekia, 12 12 35 1 o i'



The latitude difference AO at a station of longitude A is
given by the formula:

where x, y are the coordinates of the instantaneous pole and Z
is the nonpolar variable. x,y and Z are computed separately for
the evening, morning and intermediate observations, by the
following usual formula, and the use of five different series
for the five stations:

where ( are the mean values of the latitude of the station, and
4 are the instantaneous values of the latitude of the station,
and aO is given from the above formula. According to the above
formulas, if we take the five series and solve them, we will
obtain the following values:

"Z= -26 s6i, - - &o/7oza i 3 382// +oP -

where the indices M, K, C, G, U refer to the five stations. That /57
means that it is enough to find at aninstant t the latitudes at
the five I.L.S. stations, to take the differences AO = 0 - e where
1 are the mean coordinates of the stations and to form the
system of equations:

nAi 7xcoX i + ysin i + Z

Then we solve this system of equations with the least squares
method and compute the values of x,y and Z at the moment t. The
values of x,y and Z were computed for every month, as is indi-
cated in Table 11, where the indices e, i and m are mean
positions for the evening, morning, and intermediate, correspond-
ingly to the values of the latitudes in Table 10.

Thus, after elaboration, we obtain the xmean, Ymean values

as is indicated in Table 11, so we can get the values of the
polar coordinates for every 0O.05. Also, we can obtain the
graph of the values of the coordinates. Numerically this is
indicated in Table 12.
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The barocentric. value of the years 1.900.-1905 is taken as
the original point. The coordinates of the barocentric value
of the orbit of the pole referred to the new system 1900-1905
were computed from the components of the pole over 6 years,
from 1957-1961 and 1962 for the mean value of the date 1960.
Their values are:

x = 0".063 y - 0".205

Below we will give a sample of the two tables 11 and 12.
In Table 11 are the values of x, y and Z which are computed
from the mean latitude values and the instantaneous ones, which
we took finally from Table 10. Table 12 has the mean values of
x, y for a portion of the year equal to 0y.05.

We will attempt a solution of the system A~i2= xcosXi + ysini.
using the method of least squares. /58

A~i = xcoshi + ysinAi where i = 1, 2, ... 5 show the five
stations. The system is of the form aix + biy - li = 0.

We form the table:

Cos sinZ d cossin cos sin- , cos y s7 i

cos s sin73 fj/ cos sin; cos Zi sin2 
3 dcos J3 si

cos;7 sin7 Apd cos~sL?, cos 297 sifi d ,'cosf jg silr.

cos- sinrj ds co-r4sin~>, cos - sin- Acos'6 o 4_siin.,

Normal Equations

5 5

s (2)

- sin1z
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The system of equations (1), (2) will be solved by the
method of determinants.

If it is

Then

Aicos" /hinfic s1 Icos *' A4cos ?2i

Ifins' sine " s.inicos/i 14A 'isin fiL co0 2 i Z-in zCosi I 2cos 2 i ainicos f

sin,9 c I s i 1sifi Isi&og Isin9T

We will compute the determinant of the denominator: /59

Z cos 2 "h' Zsinz' cosd9i  5
- 6 cos- gsin,2, . r cog' ( sine~ - coS , 'sin " -

sinffcos . -2 sins.c o ,5 -?"

-22 sin cos- / sin,- cos 1 = /here. ,j g)

S.f cos 2P - sin 2/) - Z sin',/cos Sjsin;-e cos 2+ =

(c6s,/sin k - cosKsWJ 'j sin 7-g.

We will compute the determinant of the numbers:
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*4f. cosO Iinos -?,-

£ ' 12 -, COSifsinefl * Acos gy (lsin2&i

5

IAfi inff " sin971 " P/ "-- ,

-. 5 sinfa cos'i-Z A5 /s in in /cos j/

here

5 5 5 5

S' 5

;psin, ;5(coSsiinj -sin ycos .4 Y sin (costssin'-siiicoS j)+

4-- .. J § Ze si sin (

In the same manner, if we work for the determinant of the
nominator of y:

2ZCOS7i 5jCOS;i
2cos? jCo 2".,-coLsns I 5rj

>i

From the above solution, we observe that the values of x, y
will be first degree functions of the values of Ai , which are the
differences between the mean and instantaneous coordinates of
the latitude p of the place of ob-servation.

Generally, the system can be solved with the same method if
we take five equations with three unknowns, if the computation of /60
Kimura's term is needed. In the same manner, we make La table
of the coefficients of the unknown quantities of the observation
equations so that we will obtain the normal equations:
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[Cos Z~i. r 1 [cosZz.sin.ily I- /cos..iJz = Los i4ei]

fcosfy sinljx Zsin n1i J Lsin+i*] z = Zsin /d] -

[-osI. -, rsig l y z z = 4d -7

the solution of which will give the values of x, y, Z.

In this case, we do not have the normality of the previous
formulas, and the formulas are rather complicated.

4.2.11. Corrections of Declination

The declination corrections of a pair of stars are expressedin two parts. The first is called the "correction of the mean
value of the group" and the second "correction of the group."

These can be defined at the same time as the error of theproper motion from the results of the latitude observations whenwe have enough information from many years.

At the present time, however, the information available isso poor that the error due to proper motion is ignored.

(I) Correction of the Mean Value of the Group

It:.could be considered as the best method of defining thecorrection of the mean value of a group to use only the resultsof all the evening observations, when all pairs which belong
to the same group are observed. The difference between thevalue of the latitude for every separate pair and the mean value /61
of all the pairs which belong to a group will give the "correc-
tion of the mean value of a group."

At a few stations like Mizusawa, the weather conditions are
so unstable that full observations in one night are rare. Thefollowing method is the one used by almost all the stations.

At first, the monthly mean values of latitude are definedfor each pair as:

where Oit is the monthly mean value of the latitude of the pairi at the mean epoch to.

Oit is the individual latitude of the pair i at the epoch tof a month.
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J( n i is the number of observations in one month for the pair i.

These are given for every month on the last line of Table
7. After these, the mean value of the latitude of a group is
computed by computing the (ito which belongs to the same group.

(1/6 because each group has six pairs)-where 4ktb is the mean
value of the latitude of a group, more specifically, of the group
k at the mean epoch to where the i pair belongs. These are
given in Table 9. (All the above are described in detail in
Section 4.2.9, where a numerical example is also given.) Then
the correction for the mean value of a group of the i pair will be:

The individual values of ri for the evening, intermediate,and morning observations are indicated in Table 13, along with /62
the number of observations for every month n, the mean epoch to,
and the mean latitude value 4nto . The mean value of rl for
every pair is written on the last line of the column for every
pair. It should be noted that the difference between Tables 10
and 13 is that., according to Table 10 we have reduced in a
common epoch, while according to Table 13, we are in mean epochs.

TABLE 13. SAMPLE OF CORRECTIONS OF THE MEAN VALUES OF
A GROUP.

Unit p = 0".001.

//Pair 7  2 3

_7(GroupIf r_ 1-

/ /9, ,7f5 33/(7 -3-? / -/2 1/ 2-33 //
Evening

(oct) /' 25 /Ga7. - 375 o -325 B 325 B

A /19PdZ 733 3 9 - 403 7 - 72
Intermed.
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The table is done for all the groups.

(II) Correction of a Group

Each value of Z (Kimura) is defined from the five I.L.S.
stations together, and it is assumed to consist of the error
of declination of the group which is observed as morning, inter-
mediate, or evening group, repeatedly during 3 successive months.
In other words, the (-Z) can be considered as the preliminary
correction of declination which is applied to a group. The
Z values for every group and every epoch, in the year 1962,
which are given in Table 11, are arranged again, and their sign
changes as is indicated in the upper half of Table 14. The
preliminary corrections of a group were taken, as is indicated
in the column "Mean (-Z)" in the lower half of the same table. /63
The individual values of (-Z) for the years 1960, 1961 were
taken from the "Relazione" by G. Ceechin.

TABLE 14.1. TABLE OF THE -Z VALUES FOR THE YEAR 1962.

Mean .134 . ./8 -/3 0f - -o

TABLE 14.2. SAMPLE OF THE CORRECTION OF A GROUP.

/9 .961 196.' .'m6: e I e d "> e i-
rou

.009 .o2o .24 ':p/4 -."003 - 'O1 .&3 " "3o403 ae -.30 o4

iear 59 ,.: 14 ,i ./7 , , . ,/4"6 .5" ,1 " 4
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(III) Correction of the Declination for' Every Pair

Initially, the correction of declination for every pair
was carried out by adding the two above corrections (see
Table 15).

TABLE 15. SAMPLE OF CORRECTION OF THE DECLINATION
FOR EVERY PAIR.

Group Pair

./ 4 -. £38

4.2.12. Latitude Corrected of Error of Declination and /64
Remaining Latitudes

Every latitude observation which is given in Table 7 includes
the error of declination for the five I.L.S. stations and the
values in Table 15 were adopted as preliminary corrections of
declination.

The monthly mean values of latitude were derived as arith-
metic means of the corresponding mean epochs, from the indi-
vidual means of latitude corrected for error of declination (see
4.2.9). These are indicated numerically in Table 16 and on the
graph of the figure. On the other hand, the normal latitudes
of epochs corresponding to the mean epochs for the relevant
stations were computed by the formula:

where D, A are the mean latitude and longitude values of the
station and x,y are the coordinates of the pole for the epoch
obtained by the calculation formula (Chapter 4.2.10). These
are given in the same table. The differences between these
two are given in Table 16.
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TABLE 16. SAMPLE OF HOW TO FIND THE RESIDUALS
FOR MIZUSAWA.

esse Year 9cor loz i.e

/962. o' 3,'375 3,"3P -";/24

Sf 3,"422 3, 37o 4, 052

.23Y3 3,"37 3,3 -4~032J

cor latitudes corrected for error of declinationoc - or xco 2 2" iy2,

Res = residuals

(That is, the latitudes reduced from the mean values D and the
corrected ones derive the differences Res.)

4.2.13. Final Summation /65

The differences between two successive mean values of the
latitudes of a group for every station, for each month of 1962,
were derived from the mean values of the latitude of a group in
Table 10.

These are indicated in columns e-i, i-m of Table 17. The
summation for every 12 values in columns e-i or i-m gives the
final summation of these sequences. The mean value from the
final two summations for each station is-given on the last line.
The last column, indicated as Mean, gives the mean values as a set.

Summarizing the previous chapters, we can say that we obtain
a second order approximation of the latitude values. This means
that we will obtain the 4nor (mean) from the already known values
of the polar coordinates x,y and the nonpolar term. However, if
the Z values are arranged and if we apply the corrections again
with the new values, we will obtain the new cor (correction)
values.
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Month /WZ~ e o t wit. h . Mro

.962 -2 2-m e- 7-- e .- 7-7

Jan. -. 52 .256 -1. ~2 .3 00

Feb. . 1 d -//• .033 .

Mar. -.89g -. 027 -. ~ .07 ..

Total -7-./6 -[21 -' .76* -'5.

S-."61 -."/ 7

*Mean values of the neighboring values.

4.2.14. Corrections of a Group with the Chain Method /66

The "correction of a group" for each group was assumed to
be made up of two parts (4.2.11). The first part is the correc-
tion due to the error of declination of a group and the second
part is the correction due to the nonpolar variable of latitude
which (variable) is the same in the five I.L.S. stations. It
is not always necessary to distinguish them for the purpose of
defining the polar coordinates from the five I.L.S. stations.

At any rate, it would be important (very useful) to define
the exact value of the correction for declination when the
results of the five I.L..S. stations are combined with the ones
of the independent stations, where we observe the various stars
or the pair of stars using different methods and instruments.
It will also be important to see the results of research on the
nonpolar variable of the latitude.

In this paper, the results of the chain method, in which the
final result is distributed equally among the combinations of
the group and the whole summation of the errors of declination
for the mean values of the group were assumed to be equal to zero.

The error of proper motion was not considered either. -The
results are indicated in Table 18, where the mean values of
the corrections of a group are shown which are taken for the
corresponding stations (the five I.L.S. stations).
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The corrections of the group by the chain method were
compared with the ones by the (-2) and the differences between
them, of an almost yearly change by 0".03 in arithmetic value,
are indicated in the same table.

TABLE 18. SAMPLE OF CORRECTION OF A GROUP BY THE /67
CHAIN METHOD.

Group 4J - 2 Difference

I ./97 .3j -. //S

1// .090 .195 -. /O

4.2.15. Checking of Latitude

The checked latitude ig of station i for group g was pro-
posed by Wm. Markowith. This is computed by the formula:

where ip are the monthly mean values of latitude observed at

station 1 for the pair p, given in Table 7. Wp is the weight
which is given to the pair p and is considered as Wn or Ws for
every north or south pair.

The weight Wp is computed by a with consideration of Wn or W s -.

Wn Z(Z.D.)s

WE(Z.D.)n

where E(Z.D.) s and E(Z.D.)n are the summations of the zenith dis-
tances of north or south pairs of stars of one group on which

they can be computed for the mean epoch of the observation.

Then the barocentric zenith distance of the group disappears.

The checked mean latitudes of a group are computed for

every station as i s indicated in Table 19 from the numbers of

observations and the means of the epochs. The results are reduced
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to the common epoch (see Table 20). The polar coordinates for
the checked latitude are computed by formula 14 (Table 21, upper
half), where the index c indicates the results from the checked
latitude. The lower half of Table 21 gives the comparison
between the results of the checked latitude and those of the usual
latitude (Table 10). Their difference is very small, but it /68
becomes 0".008 or 0".009 when the zenith distance of the group
becomes large. This introduces the existence of a small error
in the accepted smaller value.

TABLE 19. SAMPLE OF MEAN VALUE OF CHECKED LATITUDE
AND MEAN EPOCH OF A GROUP.

Mizusawa Epoch

p Bessel Year O ? *Bessel YearW ? 7 Bessel Year 02

/962. d67 q'33f 35 / 2.0D 3. 99 32 /96f. 07 .. "/32 35

.-5 3 .37.2 36 ./6 .2/ 23

-233 o6 .236 .170 47 .,-7 6 .17

TABLE 20. SAMPLE OF MEAN VALUE OF CHECKED LATITUDE
OF A GROUP AT A MEAN EPOCH (SEE TABLE 10).

lBessel
Year Group

a 13'2 1" 5 7

/96. z56 . .j3y6 32 1./14

2T .11d .3 .-6 d,

TABLE 21.
Upper half

Lower half
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It is important to note that the formula which gives the
weight for the values of the difference of a group has changed.
It is:

where nl, n2 are the numbers of observations of two successive
(pairs) of a group.

4.3. Chapter 2. Results of the Latitude Observations at the /69
Independent Stations in 1962

At the present time, 32 stations, five of which are I.L.S.
stations, are cooperating with the IPMS. Among them are 22
stations and two I.L.S., Mizusawa and Kitab, which are working
independently -on,, latitude observations with 27 instruments,
and 18 stations doing time observations only, or doing them
with latitude observations. These stations worked independently
according to their own programs, and they applied relevant
methods for correction of declination. Therefore, it is possible
that there exist certain disagreements between the mean daily
values of a few stations and the ones of the IPMS. For these
stations too we work by using the methods mentioned before,
that is, we compute daily or weekly mean latitude values and then
monthly mean values for the mean epoch. The difference is that
in this case we take into consideration the weight of the number
of observations. Another difference is also that for certain
instruments (VZT, FZT), the mean epoch is not measured from the
beginning of the Besselian year in units of tropical years, but
is taken as the centrovaric mean value of the astronomic data for
every observation.

The remaining latitudes are computed as the differences of
the monthly mean values of the observed latitudes and the normal
latitudes at the opposite mean epoch with reference to the polar
coordinates which are determined from the five I.L.S. stations in
the new system 1900-1905. The normal latitudes are computed
from the formula:

Since the mean latitudes were accepted at the beginning at
the Central Office independently from the 1900-1905 system,
certain corrections have to be applied.
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4.4. Observations /70

In Chapters 4.2 and 4.3 we saw analytically the corrections
which we apply to the observed data and we also saw how we
obtain the final values for the five I.L.S. stations and for
the independent stations. Summarizing the above, we can separate
them as follows:

1. We choose a star catalogue which we can use, and we
compute the mean coordinates at, 6 t for an epoch according to
the known data. Then we examine the atmospheric terms which
have to be taken into consideration.

2. We give the known formula of reduction:

and we compute the apparent declination 6 (making detailed computa-
tions), and we should thus obtain 6r after the computation of
(1/2)(Zs - Zn), taking the various corrections into consideration
(plan. sph. refraction) (Table 8). We can find the individual
values of latitude now by applying the above formula. From
these (a numerical example is also given), we find the mean
values for each pair, and then for each group (as average mean)
for a mean epoch. After this, we reduce our results to a common
epoch.

3. By the least squares method, we compute the polar coordi-
nates x, y and the term Z.

4. Finally, we apply another correction to the declinations
for two errors, and we define the 4cor, Pnor and the checked ...
or centrovaric latitude of the stations. (This is because
earlier the difference in zenith distances was corrected, and
only the declination was not totally corrected )

5. We refer to the independent stations.

In order to assume the study of the corrections to be com-., /71
plete, the Annual Reports.for the years 1963, 64, 65, 66, 67, 68
were investigated. The description of the methods was published
in the Annual Report of 1962-63. As for the rest, we did not
find any differences in methods,and in the Annual Reports for
the years 1966, 1967 the new CIO system was used. We also see that
the number of independent stations continues to increase, as
well as the variety of instruments of ob.servation.
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Before we finish this chapter on the detailed discussion
of the methods of correction and reduction of the observations,
we will give as an example the coordinates of the centr.ovaric
term of the orbits described by the pole.

s' 2.Z 963 c4 ?'65 /966 fc,o, 'f7 (co} 168 (cZO2)

X6(a d6.6 0."657 "oo3 .D'6 34/

a25 ."20 o, 5 0o".;o22 ).7225

In the errors which follow,the orbit of the pole is given
during the various years in the new system 1900-1905 and in
the CIO system. Various graphs of the relative corrections and
the positions of the observatories in the e, A system are also
given.

Also, for comparison, tables will be given which show the
mean values of the polar coordinates and the mean values of Z
for the mean latitude of a group and the checked latitude.

For the mean latitude of a group, the polar coordinates
will be given for an increase of 0.05 year.

Also, for comparison of the values which are given by the /72"Monthly Notes of the International Polar Motion Service" and
the ones of the "Annual!Report," we give the new polar coordinates
for 0".05 for 1962.
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/962. 00

05 - /1 297 -009 297

/0 4 312 008 309

15 2/ 319 27 34

20 2 319 37 342

25 67 313 7/ 3 04

3o 92 299 95 290

.5 /17 280 /20 271

40 1-2 254 /44 24

45 /60 22/ /62 2 

50 /69 178 173 175

55 fo 132 17f1 12

60 160 97 /57 092

65 139 7 /128 068

70 109 64 094 060

75 71 65 OJ& 07

80 28 047 o93

s - 12 97 - 0/9

90 - 50 /ZJ - 05 i2g

s - 82 /78 -o8 160.
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x,y COORDINATES FOR THE MEAN LATITUDE OF A GROUP.

''962 6 39 1964 196 5 966 f96 7
.056 . a 331 -2/ 31/ -212 fg - 0;5 o47 22 06 2

.139 024 289 -083 343 - 169 291 -161 /33 003 10o 0O( 166

.222 092 289 -025 377 - ,3 365 -/182 ?5S -092 /02 -o01 /49

.306 f/18 263 075 389 - IO 47S I- 4, j4 -o98 13 o0o fS

.389 I17 231 180 358 04 50 - 136 39 -130 2/2 -013 f30

.412 161 56 257 1?96 199 429 - 006 948 -098 257 019 /s

.556 164 87 o304 8 " I 4 328 083 4j -099 34 069 f11
.639 /o/ or4 213 106 .253 227 18 358 -024 339 0/8 202

.722 044 084 26 260 f53 2/2 283 05 326 003 206

.806 - 02 10e z 0 - 028 220 0.74 225 rS 126 306 -030 228
.889 - 082 149 - 0r4 04,5 097 049 'fi 18 12t 2.r -068 24;

.972 - 8 2,/9 .- (49 093 029 0,o 06f oo 100 10 ?46 -063 3/7
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xc,Yc COORDINATES FOR THE CHECKED LATITUDE.

/192 /963 1964 /965 966 96;

056 0/7 33/ - 23 3 - 27 16 08 063 042 6 078 22

/39 02/ 290 -09 JS -181 289 -176 123 -005 089 062 76

222 0o68 29- -025 381 -140 367 -/98 246 -o9g 103 -004 13

306 /15 265 075 390 - 06f 476 -207 332 -/11 164 036 f90

389 168 233 j 180 361 03 9 -1/42 386 -132 209 -004 /1/

472; 163 (13 257 284, 20f L28 -04/ 447 -094 259 023 /68

556 167 090 307 177 253 . 334 094O/ 44Z -091 350 060 166

639 104 o0ss 2~/ /03 250 268 /69 37 -0/1 346 024 f93

722 043 079 12 032 271 16S 221 292 04,4 353 0/2 196

806 -17 094 i 653 -030 236 091 241 238 13 31/ -031 219

8891 -f1 /40 -042 045 091 o- 236 03 /40 288 - 014 236

9; -W 2f7 -/8 089 033 oqi 063 t07 //0 29 -063 30o

S04 . 00
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Orbit of the pole (1962-1964).
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KIMURA TERMS Z.

Group 1962 1963 1964 1965 196_ /6gg
Z Zc

4 -. 020 -. 016 -132 -03 1 - f22 00f -/IS/ 003' -1 3 -008 -26 -089

T 005 007 - 066 009 i-13 04s - on 027 -095 0/5 - 196 179

6 -204 - 209 - -83 -082 -o20 -082 -28 -080 - 248 -096 - 2;6

7 -/40 -/ 43 +035 -e12 032 . - fs +0414 -/13 osf -133 038 -,f

8 -149 -14 -/82 -185 -17s -19t -0. -165 -148 -202 -188 -020

9 -028 -0/4 -24o 006 -25 009 -228 038 -227 on -378 - o0f

o0 -185 - 93 -029 -189 -04S -20o, -003 -172 0/7 -1 9 020 -201

If -232 -216 -172 -2/5 -//1 -200 -f37 -190 -13/ -163 -064 -56f

12 -005 016 -334 0/ -J09 063 -3/8 Ol -346 1/8 - /25 0;

i -57 -117 -/69 -125 -20o -0 -23 -056 -2/14 -034 -383 -/30

2 -315 282 -055 -297 -006 -296 i -002 -306 -021 -308 -07S -.,o

3 -195 -156 -00 -/1 02 -1s2 4022 -166 i-033 -i -09



5. METHODS OF OBSERVATION /76

As we already mentioned, two instruments have been used up
to now for all the observations.

These were the zenith telescope of Talcott and the impersonal
astrolabe of Danjon, which introduced two different methods of
observation. It is interesting to mention that the development
of the methods of correction and reduction i.. u p, to now has
been based on the method of observation of Horrebow-Talcott,
with Talcott's zenith telescope.

At any rate, the instruments have been changed. Thus, for
example, the photographic zenith telescope (PZT) was developed
from the zenith telescope.

In what'follows, we will refer briefly to the instruments
and the methods of observation.

5.1. Determination of Latitude by the Horrebow-Talcott Method.
Zenith Telescope

The Horrebow-Talcott method is one of the most accurate
methods for determining latitude, and for this reason it is
also used for the determination of its periodic changes.

According to this method, the determination of is achieved
by observation of the zenith distances of two stars at their
culmination within a small period of time, the one north and the
other south of the zenith and approximately at the same height.
As is known, the formula of computation is:

According to the Horrebow-Talcott method, the measurement of the
difference in zenith distances is made only with micrometric
motions, and thus the observations are free from errors which
occur because of the use of arithmetic circles.

For the determination of the difference Zn - Zs, a special /77
instrument is used which is called the zenith telescope. This
instrument consists of an astronomic tube, of which the eyepiece
system has a horizontal moving thread parallel to the axis of
rotation, and five other threads perpendicular to the first one.
The moving thread can change position parallel to itself by a
micrometer knob.
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The tube can rotate freely around a horizontal axis which
is supported on a base fixed on the vertical axis. On the tube
is the arithmetic circle, parallel to the optical axis. The
inclination of the tube with respect to the horizontal plane
is measured with the use of a vernier which is on the arithmetic
circle, and with a very sensitive bubble which can be rotated
around its center and can be settled on a fixed position. In
order to use the instrument, its main axis is set vertical and
then it is oriented. In order to observe with this instrument,
we take a map of the celestial sphere and a star catalogue and
choose a pair of stars which culminate within a small period of
time (5-10 min) and with such zenith distances that the difference

Zl - Z2 will always be smaller than the half-diameter of the
optical plane of the tube. The stars are chosen so that their
zenith distances are as small as possible, and never more than
300. In this way, we perform a catalogue of pairs of stars to
be observed in the sequence in which they culminate. These
catalogues have already been arranged, andthe one used by the
IPMS is by Boss.

In order to observe a pair, we set the zero of the vernier
of the bubble in the division of the circle which corresponds
to the mean value of the zenith distances (Zl + Z2 )/2 = (62 + 61)/2.
Then we turn the tube up to the point where the bubble takes the /78
normal position. When the first star appears in the optical
plane of the telescope tube, we bisect it with the moving thread
and follow it up to the moment that it crosses the meridian, which
is the central vertical thread. Then we take. the reading of the
circle and the chronometer indications, and the ends of the bubble.
Next the observation of the second star of.!the pair follows, as
which is done in the same manner, the only difference being that
before this observation the telescope tube is rotated around the
vertical axis 1800.

If we call Xo the reading of the center of the bubble when
the optical axis is vertical, a the angular value of the bubble
deviation of the circle level, mo the reading of the micrometer
knob when the moving thread is on the optical axis, and K the
value of the pace of the micrometer knob, and if we assume that
the divisions of the level circle increase from one end to the
other, then we will obtain:

where Zo is the zenith distance of the point of intersection of
the celestial sphere (of the star) with the optical axis of the
telescope when the reading of the center of the bubble is Xo.
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R1 is the correction for dhffraction, and it is (+) or (-) if
the starting position of the division of the level bubble is
on the side of the eyepiece or objective lens of the telescope.

For the other star.of the pair, we will have:

Thus r, =214-2- d -?]) ' g-'R

In the application by the IPMS, the formula is much more /79
complicated, and it takes various factors into consideration,
such as the temperature, the inclination of the cross thread,
and others. It also considers other corrections such.as .plane
and spherical, as has already been discussed.

In order to eliminate errors of the level, Cookson invented
the floating zenith telescope. It is an instrument that has the
base of the horizontal axis of rotation of the telescope tube
floating in a basin containing mercury. In that way, the
rotation of the instrument takes place around a direct vertical
axis, and the rotational axis of the telescope is always hori-
zontal. Finally, the zenith photographic tube (PZT) is used;
its horizontal plane is substituted by a stable basin of mercury.
The image of thestar is reflected (by the Hg) on a photographic
plate which rotates around a vertical axis. Many exposures are
taken of the star. A special device called a "measurement device"
is used for the measurements.

5.2. Prismatic Astrolabe - Impersonal Astrolabe of Danjon

The prismatic astrolabe is an instrument invented by Dlaude
and Driencourt. The principle on which it is based is the
following. Suppose we have an equilateral prism of which one
side is vertical and all the edges of this side are vertical.
This prism is set on a mercury surface which is contained in a
mercury basin stably connected with the prism. The rays of a
star are partly reflected by the mercury surface and partly
diffracted through the prism. From the figure, we will find
that if the ray EH is perpendicular on the edge of the equilateral
prism BA, then Ee will form a 600 angle. The ray which is
reflected by the mercury surface is also diffracted through the
prism and then it (total ray) intersects EH at a point E on the /80
interior surface of the lens, after passing through a concen-
trating lens. With the change in zenith distance of the stars,
the focal length of their images changes, and when the zenith
distance becomes larger, the focal length becomes smaller, and
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/2

600

A\

vice versa. We see that the angle K is 1200 because AA1 A2 K
can be inscribed in a circle, and the angle A is equal to 600.
Thus, thehzeith distance will be 300 . This is the important
result which is basic for the instrument, that is if and only
if the two images of the ray.reflected by the mercury surface
and the ray diffracted through the)prism coincide, then the
zenith distance of the star is 300.

In order to make observations with an astrolabe, it must be
calibrated before the start of the procedure. We must:

1. Set up the azimuth circle horizontally, with the aid of
the level circle which is on the telescope tube, and othe
horizontal clamp.

2. Set the optical axis of the telescope horizontal. This
axis is perpendicular to the rotational axis of the instrument,
so we can simply set the second axis vertical.

3. Set the edges of the prism horizontal. In order to do
this, we must take out the telescope eyepiece and then observe
the image of a vertical thread which we holdlin front of the front /81
edge of the prism of the astrolabe. If the edge is not horizontal,
then its image will not be a straight line but a broken one. In
this case, we correct with a special knob until we see the image
as a straight line.

4. Set the rear side of the prism vertical, that is, per-
pendicular to the optical axis of the telescope by means of
self-orientation. In this case, observing through the telescope,
we attempt, by using three adjusting screws of the prism, to set
the threads of the cross on their image which is the result of
the reflection by the rear side of the prism. In this case, we
use the eyepiece system which has a prism of total reflection,
called the self-oriented eyepiece (Bohnenberger prism). This is
always found with the instrument.

5. Finally, we must orient the azimuth circle of the
instrument. In order to do this, we rotate the telescope so
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that its optical axis becomes parallel to the direction of
the magnetic needle which is attached to it, and which is cor-
rected by a value of the magnetic declination due to daily
periodic and irregular changes. Then we keep the telescope
tube immovable and rotate the azimuth circle until the zero
of this circle coincides with the zero index of a vernier which
is attached to the telescope. Then the zero reading of the
circle corresponds to the beginning of the azimuth measurements.
This way, we have an approximate orientation sufficient for our
observations.

The only source of undesirable errors is the case of a
nonhorizontal optical axis of the telescope which must be taken /
into consideration. The other conditions we referred to can /82
either be fully satisfied, or can give very small errors.

In order to observe stars having equal altitudes using
this instrument, we must prepare the catalogue of these stars,
as is known. This catalogue contains the stars in sequence
of their succession from an altitude of 600, the sidereal
times of the corresponding successions and their azimuths. The
time interval between two successive observations is on the
order of 2-3 min, and it varies according to the experience of
the observer.

When we set the two images of the star in the optical plane
of the telescope, we rotate by the azimuth, so that their coinci-
dence will occur within the parallelogram of the threads,(in
order to have zenith distance error less than 0".1). At the
moment of coincidence, we note the time with our chronometer,
and we prepare the instrument for the next observation. The
observations are quick and easily done. We must also take the
temperature and pressure readings for the computation of the
difference in correction of the diffraction. It is important to
mention that just slightly before the coincidence of the thread
we must keep the telescope absolutely immobile, so that we doinot
disturb the surface and make the image by reflection disappear.

The astrolabe has many advantages and disadvantages. The
biggest disadvantage is that we can not use the impersonal
micrometer in observations made with it. If we could, then our
observations would be absolutely free of the personal equation
of the observer. Research already done to solve this problem
has not given any results. Usually, we try to find the personal
equation by using a device; however, this method is not successful. /83

Because of the stability of the mercury surface, we can
make long series of observations. However, because of changes
in atmospheric conditions which cause changes in diffraction,
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the duration of the program of observations should not exceed
2 hours. The altitude o f. observation is constant, because
it depends on the angle of the prism.

Another big disadvantage is the change in the mercury
surface caused by the wind or by vibrations, which results in
the introduction of errors. Also, just because we have only
one coincidence of a star, we are not able to make many obser-
vations. For this reason, we are forced to observe many stars
(more than 40). Given that the random error of each observa-
tion is quite large, we have to eliminate the errors by the
least squares method of solution.

The typical instrument described above has already changed.
The major change was made by Danjon, who invented the impersonal
astrolabe. This is a fixed instrument, because of its weight
of 180 kg, and it is used .only in observatories. The principle
of this instrument is the following. In the path of the two
rays which come through the prism, and close to the point of
coincidence, we put a double Wollaston prism of double symmetry.
This prism splits the light rays in such a manner that the angle
of the split rays which come from the same bundle remains the
same. Obviously, we will have four bundles of which two will
be more convergent than the other two. The two diverging bundles
of rays are not taken into consideration. At the moment of
coincidence of the two images of the astrolabe which are produced /84
from the converging bundles (they converge more if the prism is
closer 4 change of the position of the prism), if the surface of
the prism on which we observe the duplication of the rays passes
through the point of image coincidence, the coincidence is
maintained. Given that the angle of the two converging bundles
is changing because of the motion of the star We observe,iLwe
can maintain the coincidence of the two internal images by dis-
placing the prism by a micrometric knob. This knob carries
electrical contacts connected to a drum, so that the exact times
that correspond to steady declinations between the two images
of the astrolabe are recorded.

The mean value of one group of such recordings, always the
same, corresponds to the constant altitude of the star. On
the readings of the drum of the micrometric knob, the positions
of the prism are noted, as well as the positions for which we do
not have duplication of the Zn images of the 24 recorded stars.
The 20 are taken as central.

If Vm is the mean reading of the 20 contacts and Vo the
reading when we do not have duplication, the difference (Vo - Vm)
changes according to the change in altitude of the observation.

This change as well as the diffraction is the only cor-
rection which can be applied to the zenith distance of 300
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in order to find the zenith distance of the observation.
Because the focal plane of the telescope is inside the Wollaston
prism, we can not use threads which could determine the usable
part of the optical plane.

That is, by displacing the prism, since its surface passes /85
through the point of coincidence, the coincidence is maintained,
and thus by micrometric continuous displacement we have more
contacts which give the (Vm - Vo).

5.3. The Impersonal Micrometer

The impersonal micrometer is the basic device for the above-
mentioned methods of observation. This is because, first of all,
the measurements by micrometric motions are better than those
by graduated disc, as far as random errors are concerned, and
secondly, by using the impersonal micrometer, the personal
equation of the observer is avoided. The only method that can
be compared to that of the impersonal micrometer is the photo-
graphic one. For this method, it is important to describe and
study it.

As is known, during observations we wish to know the exact
time that a star crosses the vertical or the horizontal thread
of the cross. But the reception of the time by electrical
circuit introduces errors which depend on the operator, and
that is why we refer to them as the "personal equation of the
observer." In order to eliminate these errors, the impersonal
micrometer was invented, that is, another cross consisting of
two parallel threads a small distance apart. The system of
the two parallel threads can move parallel to the multiple
cross of the telescope.

If we assume that a star reaches the optical plane of the
telescope, then we displace by a knob the system of vertical
threads up to the point when we set the star in their center,
and then, by continuous rotation, we follow the motion of the /86
star in the optical plane systematically.

Since there is no chronograph connection, every time the
predetermined graduations of the drum pass from the contacts,
we will have a time recording. In this manner, we avoid the
personal equation of the observer. It is to be noted that the
drum has graduations of high precision. In the Wild T4 theodo-
lite, one rotation of the drum corresponds to 150".

We shall call the pace of a knob K the displacement, in
seconds of arc, of the movable thread (if we assume that there
is one thread) of the micrometer, when the drum of the contacts
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makes one full rotation. This value is useful for the conver-
sion of the micrometer readings, which correspond to the turns
of the drum and portions of turn, in seconds of arc.

If we assume that we have one thread in the movable system
and that we bisect a star with it, and if ao is the reading on
the drumwhen the movable thread and the nonmovable thread
coincide; then if al is the reading of the drum for the bisect-
ing of the star, the quantity ao - al is the distance of the
star from the nonmovable thread. In order to transform this
quantity into seconds of arc, we obviously have to multiply
with the pace of the knob K. So if a is the reading of the
aiming, it will be:

In the same way, if we make other observations, we will have a
system of equations of the form:

o r /V a.2 ,' A'ez.

Then, with the least squares solution, we determine K. In order
to eliminate the dispersion of the intervals in recording, we
make many turns of observations, or we use an electric motor
which is set so that it gives a velocity a little smaller than
that of the star, so that the observer does not have to change i /87
the velocity to a smaller one, but only to a larger one. The
motor-driven impersonal micrometer eliminates the dispersion to
a few 0".01 instead of the 0".1 of the hand-driven impersonal
micrometer.
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6. MAJOR NUTATIONAL TERMS

6.1. Introduction

Closing the chapter on observations, it is useful to go
back to the material of the I.L.S. which exists up to the
present.

In doing this review, we shall try to find the main
nutational terms. The problem will give us a more general idea
of the givens [sic] and the methods of correction, and their
detailed analysis will become a way of thinking for similar
studies. The examination of nutation by analyzing the obser-
vations of latitude, making reductions and harmonic analysis
will give the main nutational terms. This chapter was considered
indispensable and the final one, because polar motion is examined
more generally, the correction of declination by Talcott's
method is justified, and the chapter on precession and nutation
closes. Thus, the theory found in the following chapters will
be better understood. It is considered necessary to give-0 an
introductory summary on nutation and to restrict the problem.
Simply because the material of the given data and the corrections
is very detailed, the work which follows will be given in the
form of a summary. In this manner, we will avoid the danger
of going off the main subject by referring to details.

Because ,:c the influence of the Sun, the Moon and the other
planets on the equinoctial swelling of the Earth is not on the /88
plane of its orbit and because of the rotation of the Earth, we
will have, on the one hand, one displacement of the equinox
point y in the counterclockwise direction; on the other hand,
one periodic change of the obliquity of the ecliptic, which is
called nutation of the celestial axis. The precession of the
equinoxes and the nutation of the celestial axis will have
equations of the form:

W 60 + p, co 2 ,7S + 69f ;Z 4 bi COS 9 + C C, 4-

where ad = 23027 8".26-468.44 tl - 0".60 tj + l".83t

wo is the mean value of the obliquity of the ecliptic. It is
given in theory that the period of Pl is 6 months, the period of
q1 is 14 days (13.7),of b1 18 2/3 years. Exactly these coef-
ficients will be examined in detail.
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6.2. Brief Examination

In Talcott's formula 4 - 6 + Z, we use,for the influence <
bf nutatioah on declination, the formula:

Joe -4/1 o coy' si 2 - st-?a, co!S 2).

From the resulting errors (i.e., the differences in errors),
we obtain the existence of an 18 2/3 term. We assume that these
errors come from the values of No, no (constant of nutation, ratio
of axes without nutation) and the value of the right ascension.
Thus the above formula becomes, because of the errors:

4SF (/o .4Y) [12 ) -os ,i 1 -o7 -) -, C,

So it will be

Obviously, we need to determine the corrections of An, Av,*b 1  /89
and b2 . By appropriate transformations, we reduce the formula to:

40p , f Cos CoS- l, a" cor'J2 + Or S7 57-yr YY r ,
or

Thus it is correspondingly necessary to determine the Al, B1 , A2,B2 , or the al, bl, d2 , b 2 to be quite small.

The complete analytical solution of which the harmonic
investigation gives the periods is the following:

The source of the main terms which are caused by the Moon
can be described as follows. We take nvas the mean motion of
the Moon and K the ratio of the masses of the Earth and the Moon.
The factor n' is substituted by n2 (K/HK).

We obtain an axis on the plane of the Moon orbit with pole
PE. On this frame, the direction cosines of H are (1, m, n) (not
of course the same n).those of the Moon 'co(- ' , .,'

Then it is. '

*[Translator's note: The original has a "v" or "u" here; the
term should, however, be AN.]
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n and its mean value for 1 month is

" c" 2 -- n P

I I Now XPPZ = -pt (X = position assumed
I' by the origin), where p is the

mean motion of position of the Moon
on the ecliptic and XPP = (the

0 additional constant which can be

E' / P given when necessary). Thus:

CO 1c / = c + r7 z Y 5 .... o ( .p

. = angle of obliquity, p = length,
W = function of work done by the Moon
(dynamic investigation) and

2

Then /90

3 2 - ) si2i s -fi co 2 Co 5 (V '/) f/
d 4 7;,/

+ , St7 29 c (' tos- 2

The constant part of aW/a* gives one constant elimination of i

which is a contribution to the precession.

This is more than twice that of the Sun (2.2 times).

The part of 3W/ae and 3W/3 with an arc angle 9 + pt gives
a motion of a period equal to the period of rotation of the pole
of the moon PE, that is 18.6 years. This is the main nutation.

The terms with arc 2( + pt) cause a much smaller nutation, having
a period of 9.3 years. The addition of the change of cos HM
within a month gives terms of a period of 1/2 lunar month
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proportional to the solar periods of 1/2year, but in more
complicated form. In a complete investigation, it is necessary
to consider also the eccentricity of the orbits and the various
disturbances of the Moon and the Sun. This has been done by
Woolard. Fedorov's work is referred to the terms of angles
1 = -bt + const and 2 ( , and it is quite sufficient in the

sense of giving a summary of how these terms arise.

As the data collected for our observations, we consider /91
the values of the instantaneous latitude i n three stations,
i.e. Carloforte, Ukiah, and Mizusawa. Obviously, these values
must be changed, and from these changed values, the determina-
tion of the coefficients desired will be made.

We consider the equation Fl = 0.402C + 0.302M + 0.296U
where C, M, U are the mean values of the instantaneous latitude
for a year for each pair in the three stations. This formula
is similar to that of the Kimura term. So Fl is independent
of polar motion. We will try to determine the long-term change,
annual and periodic. (1) Because of certain changes, we have
various circles. So we require a reduction of the results of
these circles to a common system. We choose the system of Boss --
GC. The correction in the declination for reduction to a common
system was calculated by the formula

where (SGC - 6LS) is the difference in declination according to
GC and to the results of the I.L.S., AP = uGC - PLS with regard
to the proper motions, (K - Ko) = difference between the catalogue
time and 1900.00. (2) The correction for the annual component of
the term T because of a change in the date will be made by a
correction f, where:

for the latitudes after the change in date (1922.7); 01, 02 =

values of the latitude of the Sun.

(3) The correction for thelattraction due to Jupiter and
Saturn is computed by a formula of the form:
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where C = constant, e = obliquity, A = latitude of a planet.

(4) In 1912, Ross showed that not all nutational terms had /92
been taken into consideration. Their introduction, though, was
done inhomogeneously (the mean latitude values before 1922.7
and the ones in space later); also, Wanach, during their intro-
duction, got the same value for declination of Jupiter and Saturn,
which is a mistake. Thus it was required that the correction n
be redetermined by Uemse. The corrected values of Fi will then be:

(5) One of the most sophisticated and demanding phases of
the computations is the determination of the correction for the
value of the micrometer knob, which can be found if the zenith
distance of a pair is known. The zenith distance expressed in
micrometric turns can be written m = (¢ - 6)/R where R = constant
for all the stations, = latitude. We will determine the
errors of magnitude R (R = mean value of micrometric knob)
where for the three stations we obtain: R = 0.402 RC + 0.30 2RM +
+ 0.296 RU.

The exact R values can not be found. We simply find certain
behavioral laws. We introduce a correction of R, AR = (S_ - S+)/
#/(,+- m_), where m+ and m_ are the annual values of the zenith
distances of a pair, expressed in rotations of a micrometric
knob, S+, S_ are the mean values of the quantity F2 ( (-) denotes
an original point). The formula would be exact if the declina-
tions were exact, and the proper motions had indeed, as assumed,
had a linear behavior (which holds only for intervals of the change
of F2 ). Depending on the three circles of observation, we make
some corrections of AR and we construct its curve of change, which /93
we examine in detail and make changes in; we then construct a
table giving the final AR values, and thus the corrected value
of F2 will be:

(6) We have already eliminated the sources of systematic
error. In order, however, to have an harmonic analysis of F3 ,and to avoid arbitrary errors, we must also eliminate the non-
periodic changes of F3 . So for the groups A, B, C, (circles of
observation) we compose separately for each pair the annual values
of F 3 and then we subtract them from 1900. Their differences
will be SA, SB, SC, and we reduce the magnitudes SB, SC to the
group A.
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S e 5 1A JA Se S¢c fAc whereT l 5= SA- S and'-J =Y4 -YC

(AAB, AAC are the systematic differences), and we will have the
value F4 = F3 + As where As has an appropriate value for each
group A, B, or C.

We could suppose that from-,the information originally given,
we can directly determine the coefficients of the nutational
terms. We did not, however, take into consideration the error.(:
due to declination x, and the error due to special motion y,
in which case the F4 obtained from observations and the quantity
A4 (=v) will be connected by relations of the form F4 = x + ky + v.
We make successive approximations, neglecting at the beginning
the periodic term v, and so we determine x and y.

We form Fs where Fs = F4 - (xl + kyl) (=Ao). After proper
manipulations, equating with A0, we obtain the values of al, a2,
bl, b2 and so we determine the values of N, An, B1, 82 which
were desired.

An interesting matter that appears is the following. We
assumed R to have linear behavior, and the value of n to be
increasing (correcting). These do not hold, i.e. the value of /94
n requires a correction depending on the separate values of
the correction, by a dependence which appears in the values of
AN, a term of 1/2 year. From an examination, it is not proved
sufficiently that the term of 1/2 year is an error in the value
of R. In other words, it is probable that a term of 1/2 year
exists.

In order to determine whether the assumption of linearity
affects the calculations, we form the identity

and we determine by least squares the value of Z2. Finally,
in order to take into consideration also the systematic errors
in R, we form the formula
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where we substitute F4 for F6 so that we will have the solutions
from the previous solution of the system. Fr now igiv6s the
information needed for harmonic analysis.

An important problem which has been attacked by harmonic
analysis methods is .whether there exist terms of periodicity
of the order of 18 years (as Kimura mistakenly found a term of
11 years). We will examine the other form ofi 'analysis, which
we originally gave, where we denote the frequency by p, where
9 = I /T.

This can be written Fr = Acosa + Bsina.

We consider A, B fixed (examining for small periods) and we
apply a special method of harmonic analysis, finally determining
A, B for two circles, and then combining them. After a sequence /95
of hypotheses and computations, we conclude that linear periodic
analysis gives a term of the order of 16 years, and not another
one, which, because of a probable error of 1-2 years, obviously
g i v e s the term of an 18 ,2/3:)year period. Notice that the
error is rather due to the inexactness of the method.

We can, from the determination of A, B, determine the
values of Al, Bl, A2, B2 also for the two periods, and can make
another computation for AN, An, BI,. 2 .  We observe that these
values agree with those given before.

With the above comparison, this chapter on the principal
nutational terms concludes. The nutational terms of a smaller
period (14 days, etc.) are given by different methods. A few
corrections in these were made in Ross' introduction.

The main conclusion of the above examination of the obser-
vations is the nonexistence of another term besides that of 18 2/3
years, a result which has been completely justified. Finally,
the statistical analysis shows that it is possible that a term
of 1/2 year also exists. The idea of the probability gives rise
to some doubts about the methodology used, for the probability
of repeated arbitrary and systematic errors.

Finally, it should be noted that the material is not homo-
geneous, and many corrections have been made for this reason.
This probably introduces errors in the course that we followed,
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and in the unavoidable approximations that we made. The better
system of results relies on the material of observations in the
future, and on the progress in observations and instruments.

(The material that has been used dates to 1934')

6.3. The Major Nutational Terms /96

6.3.1. Research Methods, Original Information Given

In latitude determination by Talcott's method, the relation
below is used, in general:

o = Z + 6 (2.1)

where Z is the observed zenith distance and 6 the phenomenal
declination of the pair.

Keeping the principal nutational terms only, we can express
the influence o f nutation oon declination by the follow-
ing formula:

. /y,= - e ' -0 rco C - co ) (2.2)

If the values of the nutational constant No and the ratio of the
axes of no (no nutation) have an error, and the nutation is
delayed in phase, then the values of the latitude computed from
(2.1) will include errors depending on the right ascension of
the pair a and the longitude 0 of the position occupied by the
Moon. Then in the change in latitude a 19 year nutation appears
(the nutational term) of which the range of nutation and the

phase can differ for pairs of different values of right ascension.

We assume moreover that the result of the principal
nutational terms is expressed:

J=- (A.4Y2/bVotd) cosce s v-,)- S1aco (62-42) (2.3)

where AN is the correction in the nutational constant, An the
correction in the ratio of the coefficients of the principal
nutational terms, and 1l, 2 is the delay (difference) in phase.
Then the nutational terms are not longer; they are inelluded
in the latitude change and are computed by

(2.4)
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This is a reason for the 19 year latitude change 4 o to be /97put in the formula

oF = ~oF-Jd \ ,  (2.5)

The difference of the right-hand side of relations (2.2) and
(2.3) will change as follows:

.2yf#cO m co;J t2C O6si f,4osn(?#A CC.i'fs (2. StW SC6?] (2.6)

where:

(2.7)

or in the form

where the quantities al, a2, bl, b2 have the values:

, __ _ , + o:) < = = - 170~/ __
22J' = Y +- -= ,d - "v , i2 . (2.9)

2 7  f 2

By solving Eqs. (2.7) and (2.9), we obtain:

1//= - By = ,h - b= AZ+ (d-. W Po%)bi(1+ b)b2No (2.10)o
A 4 a4faa /1 ' 6 2 _, (2.10)

/Y~7 not '/o /o

By using relation (2.10)., the problem of determination of the
corrections AN and An and the problem of the difference of phase
31 and a2 reduces to the determination of the coefficients Al, B1 ,
A2 , B2 or of al, a 2 , bl, b2.
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At first, we can see that these coefficients are very small
and only a series of very precise observations, over a long
time period, is appropriate for their determinati.on. This is
fulfilled by the systematic latitude observations, especially
those of the International Latitude Service (I.L.S.). Unfor-
tunately, these observations were only published in 1934. It
was impossible to use the whole set of observations, because in
the exposition of changes in the program of some pairs of stars,
less than one nutational period was observed. (By nutation we /98
mean the change i n obliquity of the ecliptic.) The obser-
vations that are available in general ,can be classified as
follows:

A 26 pairs, observed during 1900-1934
B 27 pairs,(observed during 1900-1922
C 21 pairs, observed during 1906-1934

In column 1 of Table 2 we give the numbers given to the
pairs in the programs 1899-1905 and 1912-1922. For some of
these pairs, the number was increased by one in the program
1922-1934 so that, for example, pair 65 was numbered 66 after
1922.7. These pairs are indicated by an asterisk.

The letters A, B, C denote the circles when the obser-
vations of the given pairs were done. The GC numbers of the
stars compose the pairs given in column 3. Columns 4 and 5
give the declination and special motion of the center of the
pair, computed from the information given in the catalogue.
Pairs 42, 48, and 84 consist of stars not included in Boss'
catalogue. Their declinations and special motion were obtained
from the catalogues published by the I.L.S.

As is known, 96 pairs of the I.L.S. program (in which the
observations were made before 1935) were separated into 12
groups with 8 pairs in each group. The closest values of the
right ascensions of the centers of these groups are given in
column 2 of Table 3. Columns 4 and 5 of Table 3 indicate
the fractions of the year in which the mean values of the obser-
vations of the corresponding groups fall. There are two values,
tl, r2 , because since 1922.7, the observations have been obtained
symmetrically with respect to midnight, which was not done before. /99
Consequently, the mean value of the observation for each group
has changed.

We will in future denote by K the total number of years that
have passed from 1900.0 until the beginning of the year of obser-
vation. Therefore the epoch (time) corresponding to the mean
value of the observation of a given group can be expressed as
follows:

1900.0 + K + rl before 1922.7
1900.0 + K + r2 after 1922.7
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TABLE 3.

Values of 0 in theMean Values
of Mean -Value of the
Group Pair Obseations Time of Observation d6r

o dof the GroupGroup ~ Pair Observations of the Group

S/1900 927 -

zI I -8 0.83 0.86 2435" /,fo

z 3" 9-lb 093 0.7

Ill 5 f-2k . 0.01 0.07

vl 7 25-32 0,08 0.02

Y 9 33./co o. o

Y/ 4 4f-48 0.22 0. 8

VI I 9-S 0.29 0.26

1/Uy is 7-,C4 0.96 0.35

X /1 J2-o 05z 7 o0

X7 2/ 8- 088 0.6.60

XUI 23 87-9 0~3 0.bs

1. Pairs observed before 1922 and having the number 72 were /100
assigned the number 73.. Since then, they changed from group IX
to group X.

2. The negative value of r2 for group III since 1923;the
mean value of the observation of this group changed to 0.93 from
the previous calendar year.

3. At6 is the reduction to the phenomenal position.
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6.3.2. Reduction from the Original Data to a
Common System of Declination and Special Motion
(of Special Motions)

The original data collected for further computations
was obtained from the following sources:

1. 1900-1905: Results of I.L.S. Volume 3. The declina-
tions and special motions with which the latitude was computed
were published in this volume. Original time 1903.0.

2. 1906-1908: Results of I.L.S. Volume 4. The correc-
tions are in Volume 5.

3. 1909-1912: Results of I.L.S. Volume 5. The declina-
tions and special motions are given for 1909.0.

4. 1912-1922: Results of I.L.S. Volume 6. The declina-
tions and special motions are given in the same volume for the
time 1915.0.

5. 1922.7-1939: Results of I.L.S. Volume 6. The declina-
tions and special motions are given for 1928.0.

In this way, the instantaneous latitudes were published by
the I.L.S. and were computed for the different circles with
different original information given for declinations and special
motions of the pairs. We take four systems for the following
original epochs (times): 1903.0, 1909.0, 1915.0, and 1928.0.
The mean date of observation of a pair in the different years
is not exactly the same, but the limits for T1 and T2 remain /101
satisfactorily limited. Thus it is possible that these<magni-
tudes do not exist separately for each year, but we can simply
use their mean values computed for the first period (bdfore 1922.7)
and the second (after 1922.7) relatively.

During the year, only three I.L.S. stations are considered,
i.e Carloforte, Mizusawa, and Ukiah, that make observations
without interruption. As original data collected_,, only the
results of observations of these three stations were used.

First, for every year and for each pair, we form the mean
value of the instantaneous latitudes. We obtained a long set
(auay whole [sic]) of degrees, minutes and seconds, and we
noted the irest in the original for the corresponding stations.
Moreover, we obtained the value of the magnitude:

82(2.11)
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These are given in the sum. For the computation of these
values, 135,000 instantaneous latitudes were used. The expres-
sion (2.11) looks like the usual expression of Kimura's term Z,
which is used for the computation of the polar coordinates from
the observations of three given stations. Hence it follows that
the value FI does not depend on the motion of the pole.

It is necessary to note that in (2.11), C, M, U do not
denote instantaneous latitudes, but the mean values obtained
for,:each year separately for each pair. Thus in the change of
Fl, the annual component will not be present (for the time being)
because the mean value of the observation each year comes very
close in the same part of the year. So only the slow latitude
change remains nonperiodic, and the one of long period. For /102
the general analysis of the whole material, with the latitude
change of long period as the object of our research, it was
necessary that the results of different circles be reduced to a
common system for the declinations and special motions. We
obtained the system of Boss -- GC. The declinations of the 71
pairs were computed from the information given in the catalogue,
and were found for the four original epochs (times) indicated
in Table 4, and then the differences

6GC - 6LS

where 6GC is the declination according to GC and 6LS that obtained
directly from the I.L.S. publications. These differences are
given in columns 2, 3, 4, and 5 of Table 4. The reductions of
pairs 42, 48, 84 were extracted with original declinations and
special motions obtained from the catalogue published in the
"Results of the I.L.S." In Table 5, in columns 2, 3, 4, and
5, the differences in special motion and declination are given:

The latitudes published in Volume 3 of the "Results of the
I.L.S." were computed withtheprecession constant of Struve,
and some corrections were required for them to be reduced to
Newcomb's value. These correcti:ons were extracted by the formula:

where P6 = annual precession in declination. These are given
in Table 6 in multiples of 0".001.
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The correction in the declination by which the value Fl was /103
reduced to a common system was computed by the formula:

d'6= (d" - s " d ) + c [ - Ko)

where Ko is the difference between the time of cataloguing and

1900.0. The terms inside the brackets keep a constant value
within each circle. The last term was found simply by multi-
plication of Ap by consecutive whole numbers.

For the first circle of observations, we use the formula

As we have shown before, the annual component of the term Z

does not affect the change in magnitude Fl if the mean time of
the observation remains constant. During 1922.7, this time
changed, and it was necessary that a very close calculation of

the result F1 be made. For the observations from 1922.7 until

1935.0, we use the formula for Z which was given by Kimura:

where e is the mean longitude of the Sun. Hence we can find the
correction for the change in result of the Z term which we must
put in all the latitudes obtained after 1922.7.

, o"3, s(a,-( . O-) cos( ' + -,)

where 01 and 02 are the values of the Sun's longitude at times

T1 and Tj after the beginning of the year. The correction J is
expressea in 0".001 and is given in Table 6.

6.3.3. Corrections for Attraction Due to Jupiter and Saturn

The aberration due to a planet was computed by the following
formula of Batterman:

c fcOsi) (Cos . 4 (si 1 -Jt' 12. rJ-84 ) si#4 Ji"6 Cos a]
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where 6 is the declination of the ecliptic with respect to the /104
equator (obliquity) a, 6 are the right ascension and the declina-
tion of the star, X is the longitude of the planet and c is a
constant coefficient. If we suppose that the declination of
the star is almost equal (very close) to the latitude, the
formula can take the form:

-c {,_jjjf ,h (d-q)pIki-7. Cosp.cosdJ (2.16)

The coefficient c is 0".0086 for Jupiter and 0".0019 for Saturn.
From formula (2.16) the corrections were computed from 1900 to
1922. For later years, the corrections were obtained from
the tables that appear in the "Results of the I.L.S." Volume 8.
Table 7 gives a summary of the values of & in 0".001.

6.3.4. Corrections for Small Nutational Terms /105

In 1912, Ross showed that in the calculations of the quanti-
ties A and B published in the Berliner Jahrbuch [Berlin Yearbook],
not all small nutational terms had been taken into consideration
as they should have been, for such precise calculations. He
published a list of these terms and auxiliary tables for the /106
calculation of the corrections, for the influence in the phenom-
enal right ascension and the phenomenal declination. Before
1922.7, Ross' corrections were introduced in the I.L.S. in the
mean values of the groups, and after this year, in the separate
latitude values. This introduced some errors that were not
eliminated by later corrections. There was some confusion in
the work of the I.L.S. which we will try to clear up.

For the first 6 years, the corrections for the influence
of Ross' terms in the mean values of the group were computed by
B. Wanach. He denoted the corrections by Ao, AI A1 2 in
which the index indicated the corresponding year (1900, 1901,
etc.). The table for these corrections for the cycle of obser-
vations 1906.0 to 1911 appears in the "Results" Volume 5.
These tables besides Ross' corrections give the value of the
constant obtained, and the "Abberation" due to Jupiter and Saturn.
These are denoted by Aga .

In the calculation of these corrections, Wanach, by
mistake, took the same Aa for all the years of observation,
which is not correct. MUhlig observed that none of the I.L.S.
publications mentioned this. Only the "Results of the I.L.S."
mentioned that some errors existed in Wanach's tables, and that
they must be replaced by Mhlig's tables. These tables are of
the same form as those of Wanach; however, they satisfy the
condition that the columns marked A o, al, ..., contain Ross'
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TABLE 7. /105

CorrectLo for 9roup
es -n TI m I _ y

I -41 -216.+

o190 +6 45 o0-5 -5 - -2 + +

4 45 +5 +2 -2 - -6 -. -6 - -1 + 2 *4
2 +35 4 +3 -0 -3 -6 -8 - - - -2 +
3 0 2 3 2 - - -7 -9 -9 -8 -3

4z -3 0 +3 43 / -2 -5 -7 -9 -9 -8 -6

5 -5 -2 42 43 43 -1 f-1 -4 -6 -8

6 -5 -3 41I 3 49 2 -o -3 -S -6 -6

7 -4 , -1 2 4 -t S 4t +2 -I -3 -01

8 -2 -3 -2 0 43 I 46 +6 45 3 +1 -

9 -O -I -2 -1 41 43 15 +6 +6 + 6. I4 2

10 43 41 -2 -2 -1 44 +3 +5 t-6 + 6 +4

1 4 42 -1 -2 -2 -2 0 42 + .

12 +4 +3 o -2 -3 -4 -3 -2 o +2 -+3 4

13 +-3 4 -1 -4 -5 - -4 -2 o +4

19 0 42 2 - -4 - -7- - -6 -4 -3

5 -2 0 +3 +2 0 -2 -4 -6 -8 - 6 -5

f6 -5 -2 +2 3 1+2 +4 - - - -8 -8 -7

17 -6 -4 +/ +3 +4 +4 +2 0 -3 -6 -f -7

8 -6 -5 -1 -2 14 -6 +5 t4 +1 -2 -4 -6
19 -q -~ -2 +/ 14 +6 +8 +7 5 +3 0o -3

20 -2 -3 -3 -t 12 16 f8 49 49 47 +4 +,/

21 +2 -1 -0 -2 0 43 +6 49 4lo +9 +7 5

22 t4 +1 -3 -3 -2 i0 4 46 49 +1o0 ;+9 17

23- 6 43 0 -3 -3 -2 0 43 +6 +8 -s +8

24' 6 l41 41 -2 - -41 -3 -1+2 +4 I
25 0+ 4 +2 -2 -4 6 -6 -4 -2 0 4-3 45

26 +3 43 42 0 -3 - -. 7 -7 -6 -4 -1 -

27 0 42 +2 +2 -2 -4 -6 -7 -7 -6 - -2

28 -3 -/+1 + Z-i4 -3 -5 - -! 4 1 --

29 -4 -2 0 42 2 42 O -2 -3 -5 -5 -S

30 -0 -3 -2 42 -3 +4 43 42 0 - -3

31 -2 -3 -2 o -3 44 +5 +5 + 42 0o -

32 0 -/ -2 -2 4J +3 +5 +6 '46 4 49 - 2

33 42 *o -1 -2 0 42 15 +6 +i 6 :+ 4

34 + l 42 0 -2 -2 -1 - +3 A5 +6 +6 .6

35 +5 +3 i+/ -2 -3 -3 -2 -/ i +2 i + G I -6
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corrections in addition to the ones due to aberration caused by /107:

Jupiter and Saturn.

Unfortunately, this does not exist anywhere. Even in the

beginning of 1916, the formula used for computation of A, B
(Berliner Jahrbuch) was not yet complete, and some small nuta-

tional terms, besides the numbers indicated by Ross, were added.

Notice that neither Mankoff nor Kimura had observed this, and

in the correctionof the remarks, they continue to take into
consideration all of Ross' terms as they appear in Volumes 6
and 7. This error was discovered only in 1952 by Uemae, as
we have already mentioned, in Volume 4 of the "Results"; the

corrections for the influence of the small terms, however,
were not done for individual latitudes. From Uemae's work, we
conclude that we can not use these values for corrections as
given in this volume, for 1916 and the following years. These
must be computed from the beginning. This is difficult for
the information published in Volume 8 of the "Results." Ross'
corrections were made here for all individual latitudes, but
the computations were wrong. The omissions and the introduction
of new corrections introduce many tedious calculations. For-
tunately, we can avoid this, thanks to Uemae, who gave a
table for the cycle 1922-34 for the difference in corrections
An = U - R, where R is the value of the correction obtained if

we take into consideration all Ross' terms, and U only those
that had not been considered until 1916. The values An are
given for mean values of the groups, and obtained separately for
morning and evening observations. We have recomputed the cor-
rections for the influence of the small nutational terms from
1900 to 1922. For this calculation, we used the tables of the /108
values of sine6X and 6 for the years 1900-1915, the ones

published by Ross, and for the years 1916-22, those of Uemae.

The following are given as a check of the computations:

1. Wanach tables for 1900-1905.

2. Tables of the "Results" Volume 5 for 1906-1911.

3. The values A in "Results" Volume 6, from which we excluded
the correction for the "aberration" due to Jupiterand Saturn for
the years 1912-1915.

The corrections for the years 1922-34 are obtained according
to Uemae's work. In this work, for every time, the mean value
of the corrections was formed for morning and night observations
which Uemae gave separately. The results were summarized in
Table 8, where n is expressed in 0".001.

Thus, we are able to obtain the corrected values of F by
the formula:

S= I 87



TABLE 8. /109

1- - "torrec- io -for
Ye V I v vi IVI I x I

1900 0 7 o - -6 - - 3-6 -5 -2 +\ i1

S - -6 -4 -4, -2 0 I2 -43
2 -6 -12 -89-6 -I 44 - 4 4 46 + 2

6IS - 6 -8 -12 -9 -5 0 4' + 46 46 +6 5

4 -3 -C -8 -4 -2 +4 42 #2 +2 :4 0 -2
5 -9 -5 +4 46 410 +8 5 43 0- -7

6 -G -6 -C o 6 4 41 +8 6 43 O -9

-2 -5 -4 o 4, #6 4 +5 2 - -2 -4

8 -2 -2 42 #7 H40o e +2 -2 D-7 -2

9 0 0 .2 44 8 i 48 i2 - -4 -4 -1

10 +3 +3 +1/ + 6 +6 + +4 0 -2 i +3
1 .12 4 4 +6 ti 9 i 4i-3 2 -1 -1 4- 0 +2

S2 42 0 +6 47 5 12 +2 -2 -!-6-2 +3

1 +4 +0/ +2 5 + 2 i 0 -2 -4 +2 4

/0, S+ -/ 0 I'/ 0i -2 i-2 -2 i+ 4

H5 42 0 *2 + 01+ 2 0 -5- -4 01+ 2

16 -2 -3 4 42 +2 2 0 0 -1

17 O -2 -2 15 -2-2 o + 2 2

/8 +4 +1 -Z 0 -2 -3 -4 -3 -2 -2 -1 +2

/2 2 2 + -2 -2 - -2 -2-4 ' -

20 -5 -2 0 0 +2 +3 + 0 + 2 4f0

2/ +2 0 -. -3 -2 i-4 -2 2 +4 0+214

22 -2 +2 i 8 -1 - 2- -4 -4 -

23 0 +4 +8 +8 +-2 -5 - '-5 - 2i-- -

24 +2 +4 +17 6 0 -4 -7 -7 -5 -2 0 +2

25 42 - 6 5 -2 -6 -- 7 -4 0 '+Z + 2

26 2 +3 +4 +3 -2 - -- -- 2 2 +2 +4 +3

27 +2 +2 -8 o 0 -2 4-6 -4 - 10 -4 z+2

S0 -/ -4 -6 -6 -3 4- -6 -Io

2 O 0 -2 -2 -4 -t -5 -2 i +6 + +2

30 -2 2 -2 - -3 -'4- 9 0 o z 4 0

31 -4 -3 -2 -2 -4 -1 -3 0 +G +6 +2 -2

32 -3 -4 -2 -3 -2 -3 -2 42 +G +6 +2 -2

33 -4I - -3 -2 -2 -2 -2 4Z +6 + o0 -3

.34 - -5 -2 -1 O -2 -I +3 +G 3 0 -3
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6.3.5. Calculation of the Zenith Distances of the Center
of the Pair

One of the most demanding phases of the computations was
the determination of the corrections for the value of the (eye-
piece) micrometric knob. For this determination, it is necessary
that we have the zenith distance of a pair. The zenith distance
is expressed in micrometric turns; it can be written as follows:

/110

_ -5_ i -- _ -;,,o -0 , - )v- -4 -7 (2.18)

where ¢ is the latitude, 61900.0 is the mean declination of the

center of the pair at the beginning of 1900. AV is the annual
change of the mean declination, and AT6 is the reduction for the
phenomenal position.

Because the value R for all the stations (3) can be con-
sidered that was taken to be the same and equal to 39".74, we
will have:

1 = 0.02516R

Moreover, the instantaneous value of the latitude was given as
the fixed value,3908'8" in the calculations AT was taken into
consideration only as a fact of aberration, in which case

,,J= - 2 ,4 os i -A 04,7 6 co, a - &. co.sio a )s,.,,,71

We introduce the following note:

and formula (2.18) becomes

The values AT6 are given in groups in column 8 of Table-8.
Table 9 gives the m values for each pair for the beginning and
end of the cycle of observation.

89



6.3.6. Determination of the Correction for the Mean Value
of the Micrometric Knob, or the Mean Graduated Value

It was necessary to determine the errors in the following
magnitude, which we call mean value of the micrometric knob,
or mean graduated value:

= O,0,O2?c 0,3O - 0, O296Re

where RC , RM , RU are the graduated values of the three stations.

TABLE 9. /111

/ 90o0 906 1/92 / 9393 d

/ + 8. - 5.3 0.504
2 + 4.7 . 58 0.50

3 + 5.3 . 5. . 0.497

5 -+ 2.2 . . .- 7.9 9- 0.479
8 4 1.2 . &.0 0.4 0

_ 3.1/ - 12.0 0.420
/0 + 7.4 . - 3.9 0.403
// + 9.9 .. .2.5 0.378
13 4..5 ...... 0.3 0.340
14 2.5 . _ 9.1 -. _ o.3 7

S _ .;2 - 12.3 - 0.292

/6 1.3 . . . 6.2 .268
17 4 .8........ . 3.9 - 0.233
/8 + /.5 . .. 5. 0.2- 2
/g + 47 . . 0.2 - 0.177
20 - 7.0 . /0.2 -0./49

2 _ 0../ 4.0 .115
22 0.6 . 3.8 _ 0.095
23 5.0 _ 0.062
24 - ,i+ 3.5 - + 2.8 0.024
25 + CD0 . + .9 + 0.02r
26 + 6.9 i4 0.0o
27 - - 8.0 . . V 2 0.095
28 - 1.2 3. 3./ 0. 26
29 __ + 24 . !4 .9 0. 60
32 - 7.8 . + 0.7 .25'

434 52 -3.3 0.304

9 05 - o. . . 2.5 0.346
90 0 6 + 0, + + ; 0.368 (.c ntinued)



L .0.5 . . + 0.2 - + 0.~ 8

42 __ - 2.4' . + i4.& + 0.469

4/ 1 . . . 4 5. + 0.o8

47 +4. /. /2 6 0. 03

8 s 4+ . - o.o505

50 _ . + 5 2 - 095

5/ .- .. .- c.6 + a49"52 - +
52 3- . . . 2. + O498

5 . . + 7.5 +- O.qvo5 - 0.5 + f.5 + 0.9 9

19. + . 7 + o.o

61 2 . . . 4 9. 3 0.3/

62 3.0 . . 3.4 1 0.2 0

5i 1  6.d /112

P_ir 1900 /90C 1922 9dt

64 4. . 9.6 4 2.240

65 4 2.3 . . + +.5 + 0. 2/4

67 + 2.3 . 9 + 0. 3 4

68 0.5 . . + 2.5 + 0.10 7fg 1 __ _ 5. _ 12 P 9 4 0.015

6 3. . .2 + 0.05

.70 - 5 4..7 + 0.0w

0 .- .9 1+ 0.0/7

72 5.0 - 5, -0.044

73 4. O. . . 0.5 0.034

74 . 3.2 . .. . ., 5.7 0.03

;5 5.5 . 2.7 .- o0Of

76 + 2.2 . . ._ 3. 0.1%

77 + J.6 _ 2.5 0.179

78 + 4... 3.0 K 0.209

80 3.5 . . g 5 0.27

82 + 5.5 . 5.0 0_ .309

83 - o.3 . .7. 0.339

84+ .5.8 4. _0

95 - 4.9 . . 8 _ 0.375

86 i+ 5 . 5 _ 0.397

87 + 2/ . - 7,o 0 - .0./9

88 2.1 o .4 5 O.27

89 - Og ./.. .-. 6 - - o.442

90 - . . 8. o.458

91 -- 0.43

92 4 3.8 _ .I - - 0.93

96 4 7./ 0 . . .5o4
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We found earlier that the R values are used in the work of /113the I.L.S. and in some cases they are obviously wrong. It is
not possible to find their exact values, but we can use some
information given about their general behavior. This is necessary
because some errors in the values are obtained for R, and they
completely change the curve of the nonpolar variable of lati-
tude, taken in the observations of the separate pairs, and they
may very significantly affect the final results.

After trying various methods, we define in terms of the
following known facts a basis for the comparison ;,of the mean
latitudes obtained from observations of the pairs with zenith
distances of opposite points.

We choose some pairs with large positive values of zenith
distance Z. The mean value of these Z values for these pairs is
expressed in turnings of the micrometer knob. We denote this
by m+ and the mean value of the F2 values by S+. We denote by
m_ and S_ the corresponding quantities with negative zenith
distances. Then the correction in R can be determined by the
formula

-- (2.22)

This will give the exact mean graduated value only if the declina-
tions are absolutely exact. Of course this does not happen.
Moreover, in the exposition of the errors of special motion AR,
they were determined in such a way that they can have a false
linear behavior. In the first stage of the calculation, we
can afford these errors, because we are only interested in the /114
periodic intervals of the change F2. It was important to notice
that the corrections were completely independent of the changes
in latitude of a nutational character. On the other hand, it
could happen that after the introduction of the changes, these
changes were negligible. Usually this can not happen, in the
collection of the pairs; for the determination of AR we can
observe the following principle:

In each of the two groups of pairs (so that we have positive
and negative zenith distances), the mean values of sina and cosa
must tend to zero. First we compute AR separately for the
cycles 1900-22 and 1906-34. Table 10 includes some data
given for the pairs of groups used.

The catalogue of pairs composes the groups,as in Table 11.
The original data for the calculation of the AR corrections
and of these corrections are expressed in 0".001, and are given
in Table 12. Because the determination was done separately,for
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TABLE 10.

13e9 nthq of cyck of obsevoadovi I 9 o 0 10s
Evi o4 cY4cQe oa observa tiows. I 922 1934

/YNUWr e o/a/ p .ir. l he grop ... ........ 12 5 /5 9

/lea, of zenilh cdlitces of potirs i -hle 9 roup

al 1he of /71e cycle J7. rotiitiovi of

?e ?ic-oe/er screw ..... +492 -5,22 +3,78 -..,L

Te ajoae /-r /e eid' of /4e cyae ...... -+5,43 -5,29 - 3.3o - t4.i

l4ecoi va-uee of cojs a . . -0ooL -4o,01  4o. -0.04

-- - -- Jl a . . . . 0. . . - .0:5 -. 03 -0,03 -O.o -

- .-/- -- r .... . . . . . . 0.28 0.24 0.27 0.25

TABLE 11.

1900-1922 _190G- 1954-

Pair w. Pa ir Pa r ___ 1 Pa

1 4 +11,5 9 - . 9. 18 + I.S

17 4- Il.3 20 - 7.o 13 + 11.S 2 - o.6
25 4- Go 25 - 5.0 17. II. 25 - 5.0

26 4- 4.8 50 - 5.1 25 4 6.0 2 27 - 8.6

34 4- 04 32 - 7.8 26 + q.2 52 - ,4

39 4- 24 35 -10.1 29 4. 1L4 70 - .1

61 -1- 2.# 4 4 -11.5 38 - 5 71 - 2.

6 '. 3 ' - o. 0T2 -- .2 72 - 5.0

67 -- 2,5 5B -II.9 65 + 1.0O 4 - 3.2

S. 4- 3.5 90 - 6GJ 67 + 2.3
.78 + 4.1 - 32 68 -1.2

82 4- 5.5 go -3.5 1r .1
83 - 0.5 - 3

89 -2,1 : 8 . 4.1
p9 - 0.9 84 4- 8.0
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TABLE 12. /116

- goo - ? Q2 / 93- ... .. R.-,ll 'i

/900 
_ 9

/ 929 /00oo/ _ / - -66

2 870 970 - 22

3 899 954_ - - 20

4 922 975 52 - -

5 97 953 -35 _4

6 897 934 36 - -3 - 2
7 89 93 21 888 86 22 -3

8 8 B 945 51 96 -4

9 8 / &  928 7 9 838 884 5- 55 24 52

tO 862 979 _-/ 1 2  853 906 G- I_49 -2

5I3i59 2 8 882 22 - 24
1/ 883 944 -5 88 8 22 24

412 8 a 9 //O 827 88 4 69/

/3 799 992 1/84' 782 90 - 3

/ 8/7 /009 183 800 929 /5 8 2 0

15 1795 033 _ 226 765 943 2/8

/6 801 /,0 ,2 228 783 927 - /7 - 51 ,- 1G
7 2 /06 28 78 983 24g  32 2- 16

/ 7 97 00 - 229 176 9 g5 222 -7 240

19 713 1030 246 759 932 2 30 - 2

20 75/ 1026 258 7 90/ 210 - 218

21 739 995 I- 239 73/ 90 214 _ 25 -

22 - - - 3Z 95 - 207 - - 201

23 - 839 484 _ 1
S952 851 - +

2 - -- - ,827 2 - 4 -
25 - - 23 - ,28

21- - + 28
28 861 /8

28 --- ~86 818 _ 8
29 24I-0 868 24  

-

863 860 4 4'
31 - - 18 860 -16 -6

32 - /
33 85 864 f

34 869 80 + _2 2

9)4



the two series of observations, we obtain two rows of values, /115
i.e. AR'i (c'ycle 190.0-22) and AR-2 (cycle 1906-34). It is

obvious that ARi and AR2 present systematic differences.

In order to combine the two series, we find the mean
differences:

A Rd - = ," 52 .

The direction in the change AR' - AR 2 does not show. So we can

simply add to.lall AR values a constant 0".0032, and obtain as a
final correction the graduation of values:

/901-0o5 ,gl,+ o'oo32.

/9oZ -2/ , 00 /6

These AR values are given in Table 12. Erom these, we /117

obtain Graph 3. In this graph, the jump of AR in 1922 is
clearly shown. The general path of the values between 1905-
1915 shows that a discontinuous change probably takes place in
1922. In order to see if this is actually so, we follow the
graph more closely for 1909-1911, taking the following con-
siderations into account. The AR values are computed from (2.22)
and denote corrections in R, taken on the average for the
following time series of observations.

0 2 4 6. , o t 2 I i19 0 22 21 26 28 30 32 34 k

-200-1/

Figure 3.
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When the sequence of values of AR makes it possible for us
to construct a smooth curve, then we have no difficulty with
any pair. Difficulty can be expected from the points at which
the graph breaks (discontinuities). In order to go into more
detail for 1909-1911, we find the values S+ and S_ in this inter-
val for consecutive time intervals, each of less than a year.
The results are given in Table 13.

TABLE .13.

/900 - /922 /90 -/934

T S iS / -5

/9/0. 24 862 /9/0. 28 97;9 1/90.25 853 /9o .27 906
.3/ 959 .36 98/ .36 84/9 .35 9. 0
.38 958 . 44 977 .47 8e . 0 907
.44 9 59 .53 973 .58 84, .47 905
. 5 859 . 967 .69 850 .53 90/
.58 863 9. 967 .8/ 856 .60 8
.64 869 . 78 963 .92 866 . 7 898

71 87 . 86 96/ 419/ .03 868 . .75 905
7a 873 .94 955 1 ./4 8 73 .80 905

.84, 879 19/ .03 956 .25 868 .87 903
19/ 885 .4 952 .3 873 .95 90o

.98 885 .19 94V .47 875 19/1 .00 905
/9// .04 882 .28 944 .58 875 .07 898

.// 883 .36 951 .69 263 .13 895
./8 883 .44 952 .6/ 85 .20 88
.35 884 .13 953 .92 84f1 .27 88"
-., 88 .61 94R 1912.03 836 .33 g86
.44 887 .69 950 ./ 831 . 40 887
.5/ 897 .78 956 .25 827 .'7 888
.58 884 .86 952 78 . .53 884
.64 884 .94 95/ .60 879
.TI 880 1912.03 955 1 .7 874
.73 880o . 96/ . .73 2 70
.84 8 8 0  ./9 960 .80 8 70
.9/ 868 .28 963 - .93 872
98 863 - - 1912.00 8 5S

9/2. 04 86/ - .07 880
/ 52 - - - . 13 8 80
.8 850 - . .20 8 8
.24, 8 8
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By using the data of this table, we construct smoothed
graphs of the change of S+ and S_, and from these we obtain,
for every ten intervals of the year, the differences S_ - S+,
and so we can use (2.22) again; but now the results of the com- /118
putation of the formula are denoted by I instead of AR. The
reason for this change is given below.

TABLE 14. /119

,-,DD dR ED o h I I

/909 . 8 -75 9//. -38 t I/O 24

9 -78 3I/0 - 65 .5 -50 / -IO 19
/9/0.0 -75 +1/0 -/oo .6 -60 -/00oo 4

S -69 80 -/so0 .7 - 70 -

.2 -60 tBo -i/ .8 d _ -"50

3 -52 +Bto - 8/ 9 - - S
.9 1 -4 fIO 7 -6 1/9120 - - - 60

.5 -8 60 -- 6o -o

.6 -J/ 160 -56 .2 - -76

7 -2 +90 -8 .3 -Bl

.8 -22 -t20 -7o .4 _ -86

.9 -22 0 -55 .5 - _ -

/191/ .0 -22 0 - 60o .6 - - -96

/ -21 0 -70 .7 - -02
.2 -23 - -36 .8 - - -;7

.5 -28 -o - 1 .9 -_ -1/2

If we express the time t in years, the mean value in 1 year
of the correction of R is obtained from (2.22) and can be given
approximately as:

In the case of linear change, I = ARt + 0.5. Of course, for

the time intervals where we consider it as a linear function,
the approximation of AR is not exact. Then, for the computation
of AR+ we can use the approximation
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-= t/ dt( / (2.24)

but then it is necessary that we know ARb+1 . The later conditions

are fulfilled if we approach gradually the part of the curve
we are studying from a section in the-neighborhood for which
the change in R can correctly be represented by a linear function
of time.

The part of the graph for 1911-12 has this property, and
we start our computations from there, going backward along the
x-axis. The results of the computation are given in Table 14.
In the last column of this table, the values of AR,: starting
from 1911.7 are obtained by the construction of an earlier graph, /12C
but the rest are obtained by an extension according to (2.24).
We will give a result. In order to obtain the value of AR for
1911.3, we first take from Table 14 the value for 1912.3. This
is (-0".0081). Then, corresponding to the date 1911.3, we
find dI/dt = -0".0080, from which we obtain the following quantity:

}/9 = - O'oo8/'O 8o = _o'0o0 .

From the data of Tables 12 and 14, we form a large gradual
graph of AR and from this we obtain the final corrections, which
are given in Table 15 (in 0".001). The fact that the method can
not be rigorously expressed in words gives the corrections, but
their chances alone do not affect the final results very much.
But this is not certain a priori, because it concerns the false
linear changes of AR, which can form a sequence of errors in the
special motions of the pairs of stars used for the determination
of the corrections. (These results can be studied in detail below.)

TABLE 15.

CorrecLovi.5 fv ro

.j 1/ 11/ ly Y I VIVHZI /X X YXI XII

2-2 2 -3 -3- 3 3 - 3 -3
- -2 -21-2 -2--2 2-

5 or 0 -/./ - -f - 0 0 0 o

98 7 0 ' 0 I cont'd.)
8 6 +-0 0 0/ o Oi 0 1(cont'd.)



Table 15, cont'd.

8 -,- /- /- -- 2 -- 2 - 2-3- 3-3

9 - -/O - I-~ - 5 i 5
/O C, -At/! -/4 6 5 5// 6 -

S6 6 - .7 7 -;8 B 9 1- 9 - -10/- 5-Z

1 - 5 -1/6 -i - 12 - 2 -f 2 -/3j -13 --11- -4'-(

/5 20 -20 1 -/9 -19 -191- 19 -9 -20- 20-20

COrrectiolmi for qroup

III V V 1 VI VI X X X I ! 1
I I I I"

/6 - 2 -2/ -20 -0 - 20 - 20-- 20 - 21 -2 , -2 l-2/ -2/

17 - 1-22-22 2-2-2/ - - 2 -2-21!-2/ -21 22

i 92 -22- 22 22 -22 -22 -221-22-2 2 -22 -22 -22-22

/9 - 22- 22 - 22 22 22 -22- 22 22 -22 -22 - 22 /121

20 -2 '--22 -!,-1-22 -2:-- -2-2 --2 -2/ -2t

2/ 21 21i --21 -2 1 i-2 -21 -21 -21 -2f - 21-2-2f

22 - 3- 31 -2/ 2/ -21-2/ '-2f--2/~-21- 2-2/:-2

23 3 - 3 - 3- 3 -- 3 3

24 2 - 2 -3 - 3 -- 3 1-3 -3 -- 3 2 :-2

25 - 2 -2 -2 -2 -21 -2 -2 -2- 2 - 2 -2-2

26 2 - 2 -2- 2- 2 - 2- 2-2-2 -2

27 /-2 -2 -2 -2 2 - 2 -2/ i--

32 0-/ -- 0 0

33 01 o 0000000 000 o o o

34 0 o o o o o o o o O o
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The method described does not allow a detailed study of the
change in AR. So it is probably necessary to reconsider the
whole body of I.L.S. material, and complicated computations would
be necessary. In general, we think that this would be very
important if it were done, because the errors were discovered by
us (Fedorov), showing that the method used by I.L.S. does not
allow the determination of the gradual values with satisfactory
accuracy. For our immediate purpose, however, such a detailed
analysis is not important. We could limit ourselves to the
examination of the general path of AR. The numbers giving the
values of F2 corrected for errors in the mean scale of values
are obtained by the formula

F3 = F2 + mAR

and are given in a table (see Fedorov).

6.3.7. Nonperiodic Changes in Latitude /122

In order to diminish arbitrary errors in the following
harmonic analysis of F , we must determine and exclude the non-
periodic changes of this magnitude. With this, we compose the
mean annual values of F3 separately for the pairs in the groups
A, B, and C. Their differences from 0".900 are denoted by SA,
SB , SC, and are given in columns 2-4 of Table 16 (0".00 1 ). The
systematic differences in these quantities can be given as:

4 - S, = J48 ooo'008 - o1"ooo9

Y - Sc = 4Ac -05OOS/- O0o/ '

Then we reduce the results obtained for the other two groups to
those obtained from group A. Thus we get the quantities:

.53 S, + d r S = Sc+ Ac

which are given in Table 16.

As final values of the corrections for the "slow" changes /123of F3 common to all pairs, we obtain the following mean values:

5= _ As (/o-01 jS _ SAs5,S (or-2) s- S + SC (22-S
2 3
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TABLE 16.

R S SA Sc I /s 4

0 + 28 43 39 i34
f D O -/ 53 4 -50 - 50
2 + 7 110 - + 8 _

5 16 2 / 20 -

S + 4/ 4 29 - 29 35
5 f 20 27 4 28 # 24
6 4-+ /6 143 1 / 10
7 0 7 -- 3 - - -3
8 - 9 - j -22 - 7 1--3
9 -24 - / - C + 4 -/0 - f0

10 1 5 6 4 6 13 Y 12 K 10
If -5 -7 2 4/ - 3 -2
12 -3 -29 i / -20 - -9
/3 - 8 - 21 -/4 -/ _ 2/ -
14, + - 6 1/4 . 5 4 6 + 5
45 - 4 - 4 8 -/
/6 # 9 - 20 1 /2 -7 ' 2 + / /123
/7 1J 7 4l9 2 9 -28 8 2B

54 S8 Sc S ST'c s
8 - 1 -/8 -7 - 3 - 5 - "5

19 - /0 -42 - 4 -26 - 7 - /8
20 - 45 - 47 - 40 - 30 - 54, -43
21 - 57 - B8 - 43 -60 -5 - 58

22 -57 - 45 -61 - 5 9

23 - 39 - 20 - 37 - 3

24 -35 17 -3S -35
25 -42 _ - /9 -37 - 4

26 -0 - 9 -28 - 34

27 -34 - -16 -36 -35
28 -2 I - -Z -'
29 - 28 - 4 - 26 -27

30 -37 - -11 - -34 - 36

34" -35 - -/5 - 39 - 2

32 - .7 -9g -3 -40-

33 -4 4 -/6 -42 - 43

39 -37 -s8 --- -4
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These are shown in a graph. The values As are obtained from a
smooth curve and are given in Table 17.

The values F4 = F3 + As are given in the table (see Fedorov).

TABLE 17.

K CorrecLos OM r rou
I I IVzz z Iv yv yrir VII; x x x I

0 - 30 K - 30 3 - 0 -30 -30 - o - -50 -30-30 -30 -30 o
/ -30 -30 -30 -- o3-30 -30o-3o -30 -30 - 30 -o- Jo

2 -30o -30 -30 -30 -30 -3 -30-30 -3o -3 -30 - 30

2-30 - 30-530 -30 -30-30 -30 -300 -JO30- 30 - 30

4 - 2 -27 -30 -30 -30 -2-29 -29 -9 -29 -- 2 - 29 -- 2B

5 -/9 - - 27 -2 i-- 7--21 - -- 231- 22 -22-2- 20

6 -5-4-17 --16 -f /- 9 i- 8 - 6
7 4, +4-3 -2 -2 - 0 0 + 2 2 + 3

8 # 8 1Bi5 +5 4+5+ - +6 K-G+ --+ 7 +7
9 89 #8 +8 1' +i +8 +8 #8
o + 8 48 +8 8 i8 +8 8+ 8 + 8 +8 8

2 7 48 +B 8 ;48 +8 14 B 4-8 I7 7

13 1#5 ,44 -7 4.7 +6 -6 LA66 I tJ-.F S
li d / D 4 I4 + 3 ? .1 2 1-1- 2 */i

COrecifos fo -9 roup

i I I-7II'L FiI 1 Y VI VIIVIIIX X- ' XIT /124
/5 o -57-/ - -2 -3 3 --
/G - - - 51--5 -5 .6 - 6 -

/8 / 4/0 - -3- 2 3 - , +6+/ i4 9
19 +27 4 28 #.3 4 / N/ /6 /79, 20 4 2 23 26

20 46 +48 +30j 32 4 33 $7+37 139 8 40 o4W + 43 1 4.
21 57: 58 50 7/ 4,52 52! 3 141 syJ- 56 -- SI 7

22 t-'50! +49 + 9 -k J8 i -7 55 S5 s& + + 3 56 5- 1
23 w-i0 +39 t8 49-:+94 '- £ 4 9 3+ 42i42 +97

24 I3J 43 1+3S 38 38 +39 -i37 43-74 57+37 3G i43
25 35 36 J436 3 36 l+3J 436 f364 36 +36 36 6

26 i435 4J3S i36 36 6.36 +#36 436 +363 4 3s +35 1-31
27 4 32 +32 ,3 35 3# 34 +34 +.3 3 ,3 +33 +33 -+ 32

>2 1j 30'30 3 332 :#32 V32 2 +]3/ +31 3 I-k30 +
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Table 17, cont'd.

29 #32 ,32 130 1430 3/ 331 3J/ 3/J3/ 3 ,f32 32 1-32

30 i34~ 43 432I!32 432 +33 -33 73f39 i 3o 13134B
31 *38 459 +35 :135 135 31 3  4 36 :431 31 37 38
32 42 142 39 39 14 ,o v- 40 +4o -A./k4 ik i1
33 4/3 1413 4 4024/4 - 4,2 .2 *4? /-42 I 43 13 4q 44

3 , 434143 4 3i1f1, j4t,3 442 € , 3 43 144,31'43 /4Y

6.3.8. Determination of the Corrections for the Declination
and Special Motion (A First Approach)

We can now consider that the initial data are ready for the
determination of the coefficients of the nutational terms. If
we put

(2.25)

where v denotes the right-hand side of (2.6) or (2.8), the problemreduces to that of the determination of six unknowns. From these,
the constant x can be considered as the error in the declination
for the epoch 1900.0, and the coefficient y as the error of the
special motion of a pair in the declination. These errors may,
of course, differ in different pairs.

We can attempt the solution in two ways. In the first, we
would be able to determine from the observations of each pair
separately all the unknowns((six) and after the composition of the /125values of the coefficients from the periodic terms in (2.6) or
(2.8), to find the most probable values. For this, it is necessary
to solve generally 74 systems of equations with six unknowns. This
method was used by Pyzybyllok, but his case was different from
ours, because he had to find not six but three unknowns, i.e. he
had the determination of N, n and the phase difference (delay)
which was considered as given.

In the second method, the problem can be solved by the
following method of consecutive approximations. First, we find
for each pair separately the x and y, and we neglect the periodic
part (term) 'oin (2.25). When this is done, we determine the
coefficients of the periodic terms in (2.6) or (2.8) by using
the rest of the deviations v, not for separate pairs but the
same for all the observations. Later if it is necessary, we can
exclude from F4 the periodic terms, and repeat the same procedure
for a second approximation. We choose this method for its
relative simplicity.
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So for the determination of the fixed correction x, and
the correction for the special motion of each pair, we have
the system of equations

where K = k, k + 1, + 2, ... m. The physical equations can
be written in the form:

e e P

and their solutions can be written as follows:

e e e e (2.20)

where the coefficients p, Pl, q are given in Table 18. The /126
values of the correction (-xl) are given in Table 4 (column 6)
and those of (-yl) in Table 5 (column 6). The differences
F4 - (xl + kyl) are denoted by Fs and are given in the table
(see Fedorov).

TABLE 18.

0-22 ~4/1.3o -/.08 9.881

0-34 f1/0.952 -0.7iC 4 2.801

6-34 123.1YZ -0.985 4 4.926
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6.3.9. Determination of the 'Coefficients a>1 , a2 , bi , b2 _

The values found for Fg were used for the determination of
the nutational terms. We write this in the form

rc- = f, coJ t"4 -a<i bl i (,.,,a.- ) 71a, o," a i-</,, 6i 4, , a ,i" (2.27)

First we distribute all the Fs values by the phase 0 - a
and then by the phase 0 + a. These phases are expressed in
hours and are given in Table 30. In order to simplify the
computations, we proceed slightly differently. All the pairs
formed eight groups in such a way that the mean right ascensions
of the centers of the groups were 0, 3, 6, 9, 12, 13, 18, 21
hours. After that, we obtained the mean value of Fs for the
pairs of each group. These we call Ml (for the 1900-1931 cycle)
and M2 (forothe 1906-1934 cycle). These are given in Table 19.
These values are distributed according to the phases 0 - a and
Q + a, as shown in the table, and for each phase the mean value
is formed again. The results are given in Table 20. By
haromonic analysis ,of the results of Table 20, we obtain the /127
following values of the coefficients.

S= - Q"002 7 O,"o/,7 , = - o,"/a o"ool,
/900-2/

[2 = - ,"008 O,002/ b2 - 0,003/ 0t,002/

a, -O,"0034 ,00/ 6, = - o'o/z4o _, o,"oo/
1906-1934

az = - , OO~ 2 O, oo00/ 62 = - O/,ooS Ofo'6

The results of two series of observations agree satisfac-
torily. It is true that these results are not totally independent
o f each other, but the observed data common to both series
form only one quarter of the entire original material. Giving
the mean value of the results obtained from the two cycles, we
have:

-o0o3 oJ0 (-) -0 ,0o/ 0I';7 (dy-cf)-Q,"oS o Co; 01& )Iq"000S

Sik (dtq) 2.28)

and so from (2.10)., we will obtain:

/Y- - 0o/O244 ,t0 ,000/8 /0 -J 0ooo 2 ooo 2 1 .- i
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TABLE 19. /128

1 -oa3 A .4Z -a o . ,z
2' I 8 9A

0 /6 A ~4 - 39 - / 19 f 26 -
I 1 /5 + 6 /2 /&I 22
2 1J 14 3 0 /D 7 - /6
3 I2 /3 4 16 9 15 19
4 1/ // 9 8 - /u _
5 9 1 9/3 13 - /
6 8 9 + 6 5 // /3 /t8
7 7 8 - . - 4 0 . 2 - 20
8 6 6 4 - i/ 3 9 -22 - 23
9 4 5 416 / 8 42 - 20
to 3 4 420 + 18 0 6 4 / -4

H 2 2 -20 -36 23 5 - -16
f2 0 -/ / 2 4 -22 /
/3 123 0 -8 -2 20 - 7 -5
19 22 23 -4 23 19 / -418 423
f3 20 2/1 - 3 - 2 B 0 4 +42
/6 19 20 -26 4 7 !4 23 O + 9
17 18 19 1 28 4 24 /5 2/ , 7 - 6
18 7 /7 -22 1 / zo -/8 - o
/9 15 /6 / 1J 20 /2 49 -1 # 419
20 /4' 15 8-/8 // / 4 4 -f5
21f f /4 -/ -/2 fO 16 -34 -4
22 12 12 + 2 9 __ .-
23 /0 to __ 128 7 /4 I _ 7
24 9 9 +3 i 1 2 5
258 a + ' 6 S// 33
26 -49 40 9
27 5 5 - 19 2 8 _
28 41 4, ? t +
29 3 3 +4 oi o +
o30 / -9 22 5
Ji 0#2 '2 1 /9

32 25 23 -16 20 2 - /+ I
33 21 2/ / 21 I- fI
34 20 20 -39 f 23 14 5

6"

0 /1 23 -22 8 2 +4-
f 10 22 3 5 1-7 3/ ,36 -
2 8 2/ - - o -40
3 7 9 -22 4,22 -25
4 6 /i - 5 3 21 -29
55 17 -0 20 -2 5
6 3 16 # 3 6 i'0 19 -/ - 70
7 /4 -l/ -f6 ,23 /17 -26 37
8 / 13 -24 -18 22 16 -31 4 42
9 2.3 /2 7 2 - 3 20. /S / 4 2

/0 22 t0o 32 # 28 /9 43 4/2 4 /3
if 2/ 9 + /6 + Zo B 1/2 + 2 t- F
12 208 I +25 + 16 t 42G -s9
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Table 19, cont'd. /129
Pase Phae

_ a d a I I M - , I I
2

t3 1 . 73 . -6 /5 1 9 -
/4 17 5 + 7 o 0 8 +/ - 35

/5 h 1 - 3 "+ / /3 j  7 6
1%' -3 -5 -3 // 6 -30 -5

/7 13 -0 -7 b 4 - 9 + 1y
/9 12 0 -/4 -/2 9 3 -20 i 20
/9 U 123 42 -4 7 2; - 5 o
20 9 21 -22 -/9 6 O -36 -70

21 8 20 # 4 5 5 23 -27 -62
.22 7  /9 -/ 4 2/ -
23 5 /i - 5 20 - 6
2,4 / 16 + f2 2 49 8
25 3 15 3 0 f7 -29
26 2 f4 1 -22 23 16. 23
271 0 13 4 22 5 8
28 23 1/ t, 21 13 28
29 22 10 6 /9 12 - /4
30 20 9 "+ 19 / -24
3/ 19 7 -2 /7 i -3
32 18 G -/0 1 8 -

33 7 5 - ID It 7 1 2134 15 4 3  13 6 -2

/2
0 5 5 28 / 8 -9
/ 4 3 - 8 O 7 4 /
2 5 2 - 37 23 6 - 92
3 -29 _ 22 4

4 0 23 - 7 20 3 r 2/
5 23 '22 -.6 /9 2 /I9
c 22 21 -30 7 0 -29 -20
7 20 20 -20 -1/ i6 23 - +//
8 1/9 1 4 /V 24 1S 22 -/ 7 289 18 I1 +/6 i 42 i4 21 - 9 4 32
1o Id +C +o 26 f 19 449 437
/ fr €5 1 8 1 7 32 4 '
12 /4 13 -23 +to10 10 7 -oc -/6
3 13 ii 4 8 -6 49 -35 -27

14 I4 f/ -4 -34 7 y -35 -235 /0 ;0 3 0 -5 -32
1/ 9 8 - 8 -2 2 -4 -/5

S 7 - 30o 4 6 o3 5/0 i O5
18 6 6 -40 -389 -33 5
19 5 -4, -2 /1 8 -53 - 2f
20 4  3 -/2 -59 0 6 - -71
21 f -38 -47 23 -/ - 9
22 o - 8 22 3 3
93 0 23 - G 4- -S
29 e3 2 -6 9 I 0 - 20
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Table 19, cont'd. /130

25 22 eo - 23 .
26 20 19 -- 4 7; 7 22 -
26 1 4, 46 20 -9

28 14 16" - 26 I7 19 -
29 16 - 193 ' - --
30 / 4 8 2 7 -

31 H 3 1o i -3 ! v -1 -

32 /€ (2I1- i 9 l, _
33 f io 430 6 1 3

f59 I 1 -3

0 23 I 0 00 + 5-
/ 2/ 10 8 -2 f 24

2 20 8 -3/ -I ' - -
3 19 7 ' 16 fOI - 11 -.
5 632 3 + 4 5 -
4 6 + 33 8 2

f2 f3 7 5

6 /5 3 + 8 . 4 t/ 6 _ft +32 6

S14 2 425. /8 /O 5 -' -6
8 1 2o0 i-1 + 6 9 3 -23 -f9

- 9i 8 2 -22 -26
S0 14 -2 6 0 0 2 32o 2o 22 -1 -

f/ 8 2f 9 -13 -/9-
12 149 - 5 - b 4 22 - -26

f3 6 18 -66/4 5 !7 2- 20 2 +6

5 6 / -2f -9 -4 6

16 2 (/ -16 - 23 17 -9
17 /4 3 +31 4 32 22 15 5 2
1, j23 121 1 4 ¢II 1 20 14 41 -f2

19 22 10 -7 -9 9 13 2 27

S2B /8 18 12 421 425

2/ 20 8 16 10 -3 1

22 18 6 -6 s 19 - 1
23 / 5' - 8 - 416
24 64 4- 2 tZ 7 -2

25 14 2 44 (1 - -2
2613 / - -
27 42 0 - 1 9 -

28 22 / -- 12
29 1D - 5 23 - -12
30 8 20 - - .42
J 7 0 122 21

3 5 -8 2 20 1

3 -6 02
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TABLE 20.

/eawNa oflhe vaaesj of fA, Heaws o/f Me vaeues of Fs.

P4'fa e d[islri6uted accordi o kMe pha ses Pajp disiribued accordkng9 Lo je pa e I

of ie argumehi iO"00lo) o ije argumedt li of ool

ds -a d a _ I _516 -f C

ZO-2/ 19=6-34,, 0 -- 2-1 IR= 6-39 1?Z -Z{1(963= RO-21 . 6-__

0" - - 5 -/5 -1/3 12 - 4 -1 8 /3 -1 5
/ - - /3 1 / 0 13 - 7 . +- / +4
2 - 20 - 13 -10 - 7 t/ 0 , 2 -9 - 2

3 - - 9 - G 4 A" + + / -7 1 2
4 I - / -I - 16 -' - 8 -4 -
5 - IS - If 4 4 -/7 /7 - ' 413 -/7 + 3

-- /9 - 4 e3 1 8 4 2 +- 4
I - / - /8 6 -1 /9 4 +I -- 4 4

8 - 9 -8 -3 +q 2o -I/ 2 -9 - 5

9 - /S - 8 0 21 4 20 + 9 -16 -. I

/o - - , 4/ 2 . - 5 . 8 -1o + 2

// 1 -3 + 7 +/ 23 -9 + 2 -Do -/4

6.3.10. Possible Case of Approximation of a Half-Year Term, /131
The Corection Values for the Nutational Constant

According to our initial plan, we must disregard the periodic
term of the change of Fs and then redetermine the corrections in
the declinations and proper motions. We return to the matter
of the influence of error on the gradual value R in the final
results of our calculation. The necessity for this comes from
the following considerations.

First, from the method of determination of R that we used,
the changes in this quantity can have a false linear behavior;
second, we obtained earlier some indications that the value
which we found for n ought somehow to be increasing. Now,
however, the correction An seems to be practically equal to zero.
This last result deserves greater attention, because we conclude
that the assumed value of n requires correction since it depends
on the separate values of the correction in the nutational
constant of the right ascension of the pair of an observation
of which the correction was obtained. This type of dependence
seems to be a 1/2 year term in the values of AN, and it was
discovered in the results of Przybyllok, Kulikov and Jakson.
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Because the previous explanation of this term is not valid
any longer, we come to the conclusion that this was caused by
some systematic errors in the observations, and it especially
seems to be the consequence of the phenomenal linear changes
of R. We put the difference between the true gradual value R /132
and the supposed R' in the formula of a series from which we (
take out the first two terms:

R- '= o +C , (2.29)

The difference in micrometric readings for the pair with
right ascension a can also be put approximately as a linear
function of time

P o !cos

where p is the precession in the declination. We obtain:

/ (2.30)

c -- C/ o O C

For the determination of the nutational constant, the equation
of the relation takes the form:

Z'yVAiN y(2.31)

where x and y are as in (2.25) and u is the coefficient of No in
(22). The free term u includes both the arbitrary and systematic
errors. Since we are now interested in the influence of the
square term only, we use (2.31) together with the following
equation:

i su /'= c2 (2.32)

in which AN' is exactly that part of the correction that is due
to the influence of the false linear behavior in the assumed
R' values. Then the regular equations take the form
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j 7 Z} 4 C 4{/ ZI) (2.33)

In the computation of the free terms of these equations, and
the coefficients of the unknowns, we can substitute an integration
for the sum. We will not give the elements in detail, but rather /133
the large transformations which must be done, and we will not
give the solutions of (2.33) in a known formula. We will limit
ourselves to giving the formula in the special case of the deter-
mination of the nutational constant from the observed data of
the I.L.S. for the years 1900-1915, i.e.

, 8 - c2 _Ca i
1 2 cos 2 - , 3 J 2 ,S (2.34)

If we take Cl = -0".003, we obtain a curve which represents
satisfactorily the half-year term which we find in the correc-
tions of the nutational constant found by Przybyllok. Figure 4
shows a graph of the function of the nutational constant in
terms of the right"ascension of the observed pairs for a linear
behavior of R (C = 0".001). As independent variable, we have
the right ascension expressed in:,hours; as dependent variable,
we have the correction in the nutational constant in 0".001.
In the construction of the graph, the scale to the left gives
the independent variable (ANo) and that to the right is related
to the points representing the values of ANo found by Przybyllok.

Przybyllok found the correction in the nutational constant
separately from each station. We obtained the mean value for all
the stations, and then we separated the pairs into 12 groups and
computed the mean value of AN for each group. These mean values
are given by dots in Fig. 4.

LIChc 2.o4 These assumptions are /134
1D not sufficient to show that

the real case of the appear-.2 +/ ' .2 ance of the half-year term
.o-i - #0.6 in the value of the nutational

0.8 -I /0.0 constant is an error in the
K 2 -0.6 value of R obtained. They

o. only show that such a case
. -1. is possible. We have already

02--8 said that it was necessary

0 - -2. to examine whether it was
o 2 9 8 /10 / /4 'IS 8 2o 2? 2 probable for the false linear

Fig. 4. behavior in the changes of R
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to affect the results of our computations. The method used for
the determination of AR does not exclude the probability of
such behavior. Checking for this is performed as follows:
First, by using (2.28), we again put the nutational constant
of the latitude from Fs, obtaining the values F6. These are
given in Table 30. Moreover, taking

a C2 + k2 2 2? ' (2.35)

and using the method of least squares, we obtain the following
formula for Z2

2 = 0(po F6 ", kF P Z Z Kz F  (2.36)

The coefficients of this formula are given in Table 21.

TABLE 21.

0-2/ .*375.93 - 9.07 +

0-22 -320'.67 -81.16 -- 3.S5
-3 t 2.12 - 0.3S + 0.01

6-31 + 3.35 .- O.+o 0.01

We do not give all the values of Z2 . It is satisfactory /135
just to write that no dependence of these values on a has been
discovered. It seems that the values of R were obtained almost
free of the systematic errors that can be shown on a graph
of a function of time. Relating this to the determination of
the corrections of declination and special motion in a second
approximation, we let out the last term in the right-hand aide
of (2.35) so that we can use (2.26), substituting F6 for F4.
This year we obtained the computation in a larger number of
figures. The results are given in column 7 of Table 4 and in
column 7 of Table 5. Then we compute,

F = Fr- rz* A)7
the values of which are given in Table 30. In Fig. 5 we show
the consecutive phases in the improvements Of the original
data and their preparation for harmonic analysis. We take as
an example pair 96. FI is the direct result of the computation
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-",from. (2.11). F2 is the result
I_ I I F- reduced by use of the special

values of the initial declina-
O tion and special motion of the

center of the pair through
the total period, F the same

0o 2 4 8 02 (4 16 8 222 2628 5032 34 after the introduction of the
t oo - correction for the error in R.

Finally, Fy gives the wholly
01 -7 complete data for harmonic

- - -r analysis. The dependent
/0 -- variable is in 0".001.

6.3.11. Time Diagram of /136Analysis of the Nonpolar
Variable of Latitude

From the studies of the
nonpolar variable of latitude from observations in the inter-
national stations during 1922-34, Kimura discovered an 11 year
term.

0, O/8 S"47 aa-320 3 / -fo) G* ia= 192,038

Although Panchenko showed later that this result was not
exactly correct, we think that we must consider the matter of
its existence again, based on more sufficient observations thah
those of Kimura. Moreover, it would be important to answer .o(

a more general question. Are there some latitude changes of
long period.and/or of a period larger than 19 years of nutational
motion? If such oscillations exist, they can be the cause of
systematic errors in the nutational constant, the value of the
axis of the ellipse of nutation, and deceleration. There is
also the case of the appearance of a half-year term in the phase.

Some methods may possibly discover a hidden periodicity of
this kind. Our problem has certain special properties that
make the use of some of these methods impossible without some
preliminary calculations. After a series of experiments, we
ended with the following plan of solutions. -Making F7 for
the expression the analogue of (2.6)

F = AI corp coma & cot l of ~At Ji-rl cos a /3 $ /,t JiY d (2.37)

where p is the frequency related to the required period .by the
relation = 2r/T and placing
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13 43,+ 2 SI/)hi = /3 (2.38)

we will have

F~ - A COf ac BSuh (2.39)

Because we considered only the long-period latitude change, /137
we can assume as an approximation that the coefficients A and B
are constant for a year, and for their determination we use
the usual methods of harmonic analysis. For each of the 12
groups of pairs, and for each year, we find the mean value of
the quantity F7 . These are denoted by F and are given in Table 22.
Thus for each year of observation, we obtain the 12 F. values from
which we find again for each year separately the coefficients A
and B. The computation follows the usual method of harmonic
analysis for 12 dependent variables in which we assumed, for the
sake of simplicity, that a takes the values 0, 2, 4, ... hours
and not 1, 3, 5, ... hours, which it actually takes. So we
do not get coefficients A and B, but two other magnitudes A'
and B' related to these by the relations

= A cox ao_ ) t7 = 0,996 .4- q 9 "
, , 

i4' d,,/S / £ 'CoJl 5f 2f(2.40)

The results are obtained initially for the 1900-1921 cycles
and 1906-1924 cycles separately, and then they are compiled.

The values for A' and B' are expressed as in F7 in 0".001
and are given in columns 2 and 7 of Table 23. We use this part
of the original data for the determination of the hidden periodi-
cities in nonpolar latitude change.

We will use Fuhrich's method as that which most approxi- /138
mates the conditions of our problem, rather than the usual
method of Schuster. Pollak used this method in the linear
periodic analysis of the motion of the pole and obtained the /140
formula and plan of calculations from his papers, and especially
the computation of the automatic correlation of the coefficients.
Similarly, the second coefficients that we have denoted by y"(A)
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TABLE 22. /139

I tr Ir i I I viI vIrt wrI itx x I xnl
C -le 1900-1921

0 3 #5 2 10 #21 - 6' 49 14 -13 Is 1/ 12 r -3
I - 3 #36 132 JS3 tlz -28 420 0 /O 3/ 4 2 1 4 33

2 / 24--17 -22 -Jj3 -49 -3v 39 -283 -28 - +f7 4/
3 -14 i-1 -3 22 -2 / -35 -92 14/0 1 ? 4 1 -17
/ 12 - / - - I -A 4 7 1-30 O414, 9 42I -19

S -32 8 - 8 -2 3/ 423 .I/O 0 -3
6 4 12 f-01- -t 41S7 412 '4 1- 17 -25f- 9 -29 -23 3 L/N -12 -3
S f-1 /2 - 43 -29 -22 I-I -12 9 Q+28 14 18 - +9

8 -6 -12 -40-f3 - 29 h 3 4 /6-9 24 e -6 -
9 / 20 430- 5 - 4/2 14/2 426 - 2 -2f - 9 -52 23
/o 7 21 -6 ; 30 4 25 142. 8 4 /4 i-55 -13 J6 I0 4 3
i f- - 3 4 431 1425 4/7 - 2 439 4/0 -i -39 -28 - 4
12 - I -26 30 4 27 421 -8 -26 -34 4 / -28 -21 - 4

13 - 1- 7 1- 2 - 8 422 14 281- 4 -29 -8 -20 -10 -2
14' H7 /S /4' 4/9 /36 #442 -381 -2 -33 -/4, 122 3

1 -; -8 5 - 4 - / 4 /' 16 4- 1 -38 - 9 - / -6
16 -28 0 -2 4 9 -3V #/I/ -j Y 2 -32 13 0 -2ze
17 +lO 440 43 i-Y -4 423/ 55 1-4 1 1-41 6 4 H/ 02
/8 -27 14 - 81-12 -/2 -39-24 -26 1-/6 1/5 +26 490
/19 31 2 -504 22 / -30 -38 -47 -22 +9 t423 146
20o -26 i32 -14 -34 -34- 2 1 6 442 H5 420 L43 5
2/ - 9 -37 +- 1-2/ I 10-40 -12 - 5 O + 6 # 9 9to

Cyc e. I
6 - 6 / 6 .B - 9 -68 -25 420 -26 - 5 .23 1/6 -7
7 -24 -489 - 9 -23 -27 -24 4 5 1- 26 4 #9 #2/1 + 4 -29
8 -10 - 2 -32 -9 426 42 +34 41/6 4I/3 -13 -3 -Zo
9 -17 - - If - / (JO 436 4 55 + 2 - // 8 -32 2
/0 - f - A +2614 33 - 4 +P 4-6o 45- 5 41 / 43f +24
S1-31/ - 12+ 14 439 1 - 5 -1,9 4t77 . 2 i-36 -50-39
/2 /~39 - / 422 - 9 430 4/9 -12 -4 -3 !-/7 -23 -1/
13 6 /o0- 4 -U 4 2 1 --o -9 - 1 -30 ~Zo -9
14 0 42/ - / 9 #2-7 48 -27 #28 -21 -9 42o 20
15 ;-24 +/3 -4/5 f- -/6 129 -321-40 -', -'G 014to
16 + 40 -0 / 69 0 2 -25 1 / -40i+ 7
47 + - /0 420 -24/ 23 3/ -36 -22 42 4-94 -201+3Y
18 -21 - 3 - 8 - 1 26 - -o - 7 -13 - 8 - - 5

29 1-13 7 0 -28 -13 822 -22 +7 1-26 457
20 4-3 1 - 7 -31 -7 1 -42 -/0j - -1? 4A, 427 42
2f l-Si 16 427 -17 -J0 -30, 9 +// 4- 6 4 1/ 410O +/S
22 433 4/~3 - I/- M 4, B + 1 - 6 + 1471-I / -/ +9 439
23 -38 412 4# - 5 5 4 9 -- 7 4// +32 /2 i- 1+23 -//
24 125 - 7 + 9 4 1 4 8 -3 - 21 -- -6 -2 -z -
25 8 33 4- 6 -f 2 48 - G - 8 432.4 2 - 2 -6
26 4 5V - 3 -20 - 8 +31+55 (2 61 f- 18 + - -S -
27 -24, -/3 - 8 17 +/ 1410 -12 -2 17 -22 -291-17
28 -421- 7 426 4// -1--1 36 *-32 -/4 -5 -24 +//4 -14
29 - 9 -/- 4 / +-35 4 7 c 5 23 +-2 + z -21 +6
30 i 2 i 4 - 12 1/15 -16 / 5 4 /6 1- 6 -5 -/4 -20 -15
3f1 /1 434- i1 / 4 -26 -35 0 -5 4-2 - 6 - 5 -32
32 -/3 I 16 + 5 -14 6 -10 4/6 -38 - 5 -3 1-i6 I-24
33 # 16 - / -12 4 3 # 28 4 26 454-22 4 5 -IS -22 / 4
34 -35 4 41+4 , 2 -38 - -/17 -35 - 3 42 -19 -2y
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TABLE 23. /138

R A' a'(A f'}V"IbR4 Ua v
/ 2 3 4 5 C ' - 9

S-i 3 0o -15 0 o-O
/ '/3 446 k77' 21 - 2 + 2 +60 +82, 21 .4

2 -/26 4 30/ 5/ 4f -/10 - 3 4 34t 5 5 3 7 2
3 -3 4 3-21433 62 -// -18 +3+29 GO i-8
4 - / / 1O 7 82 -12 :-28 18: 8 26 -45

S _-/6 -2-19 103 -27 -3 4- :-2D /07 ,- /
4 . -22 -42 124 /3 - -33 -50: Y28 7

7 + /1!-36 -3 :/ 4 -2 -54 :- 2 /50 -13
& -// -5 79 165 - 9 :-5 -56'-82 7/ :-/3
9 -/! -6. -l8fI 85 -6 i4-7 -48 -XS -93 4, 9

10 - 5 !-491-76 206 + 6 - -23 -6 ,4/ - .

14 -3/ -31 -4 6& 9 -21 i-3 -32 -4 235 3
12 i- l- 2 - 81 2 .9 + 20l-/ - /0 25 4- 7
43 / i -2 2 '2 8 8 -+ 8 /. 29 !4- Fe 278 - /

9i / 7 - 9 '32 28 8 4 /7 *-3/ + 4W J0o :+
-5 / -13 /63 4309 2 4// , 39 4 54 32/ 3
46 i2 A25:77330 4/ 6 Si o5 62734Z -2
4 + 8 i-67 89 350- 4 - 8 /687 *72 4 -/0
48 4 8 5.1SB*Bo / <- 7 57+61 25 -2

19 1430 #3 453 3/ 4/ iIS 4 7 135 ,+ 3 47 I+/17
20 925:-,' 9 -/ 52 +1/ 1-18 '/2 l 8 68 - 8
2/ t/3 +20- /20 73 - 1 -2 8 9 89 fB 91 /

22 +3I- 4' 93 -1- 7 4 30-27 1// 5
23 + 9 - 1 //4 ,+ L 4 /9 - /32 /-8
24 4 9-3 - /31 -  .7 -2/ - iS t/
25 -8 i- 4! - 1 0 -38 - 17, 1 2
24 -2/ 10 - 176 -3 -8 -/ 196-3
27 -/3 -58 19- - 2 + K +16 2,18 3
23 - 2 3 4 2f.71 -/2 +6 /o 39 6

29 - 7 237 */ 3 i+/ - " 26/ -2

o -/0~- - 2.-lr? -3 + 3 ' 282 -/0
3t + 9 '279 +f6 3 - 303- 9
3Z -4 299 f / 7 - - 32.7-
3 -13 - - 32~ -f- 9

S1167
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and y"(B) can be so understood as being of sinusoidal form
that the frequency of the largest nutations are accurately
determined. For A' this was found to be equal to 200.6 per
year; for B', 2104 per year. These correspond to periods of
17.5 and 16.8 years.

In order to discover other
1. 0 . periods, we start again from

the data of the largest periodic
SI terms. Thus we put A' and B'

.0 in the form

-.02

0 2 4 6 8 t0 I? 1 1 8 420 22k where Pa = 2006, Pb = 2104. The
values of the arguments PaR and
Pb R are given in columns 5 and

Fig. 6. 10 of Table 23. After this, we
find by harmonic analysis the
following values of the coeffi-
cients of the periodic terms.

4n = 0,"002/ 0 ,14 -'0-013

S096"0086 =

and finally the values of the remaining ua and ub that are given
in Table 23, columns 6 and 11, in 0".001. These seem to be arbi- /141
trary, so that the continuation of the linear periodic analysis
would make no sense. Thus we have succeeded in the discovery
only of a nutation of period near 17 years. Although Fuhrich's
method does not allow us to compute rigorously the precision
of the values obtained, an error of 1 or 2 years is very probable.
Hence we can recognize the oscillation taken together with the
nutational term with a period of 18.6 years. So we have the
justification for our reasoning, i.e. that other terms of long
period in (2.37) including the 11-year term do not appear in
nonpolar latitude change.

6.3.12. Determination of AN, An, B1 and B2 (8' Approximation)

So far we have used A' and B' whichwere acceptable for the
study of periods. For the determination of the coefficients in
(2.6), it is necessary that we use A and B .computed from (2.40).
The results are given in Table 24 in columns 3 and 4 for 1900-
1921 and in columns 7 and 8 for 1906-1934. The rest of the
columns give the remaining ua and ub (in 0".001).
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TABLE 24. /142

/900-1921 _ 9 o-193
k( d A y 4 A /3v

3/ 2 6 _ ___r _ _

0 2500  5 /

/ 232 -// . 2 2

2 212 K 23 - 3 +5 -/

S3 195 / -8 - 6 - . -

S-73 - 3 - 28 - 7 3-

5 / 5 -/8 -13 -20 / -
6 135 /5 O 4 / // 8 -10 22 2

" 7 15 + 7 -16 4 // -. / - /0 - 26 0 2/i

8 96 -5 -/8 / 2 -16 -22 - / - 8 - 9

9 77 - 2 + /4 + 6 4 /0 - 30 4- -/3 - /

0f 57 4 +5 4 5 - 3 -/0 -8 8 -13

S/ .8 -18 + -3 - 9 - / i- 48 I 13 -1 3

/2 /9 i- /1 2/ .- 4, 7 - 2 + 20 i / 2 /10

13 359 - 5 + / 0 -A 3 4 41 + 9 4- /3 -

14 .34 0 , 12 14 23 + / 9 -2 . /0 2 0

5 32/ 7 - 7 - 8 5 t/ + 3 + 8

16 30/ 0 + 2 - 4 - 6 O 1 - B + 4,

(7 282 4 - 13 -2 -4 +- - 3 - 5 - 6

'& 263 t /4 -/5 + 6 - /3 - 2 + / -/S , 2

19 243 + 36 #/1 / 2-7 +23 # 21 - 3 - 3 4 /

20 224 + 7 - 22 - 2 - 1/ + 39 -5 + 2/ - 8

2/ 205 + 7 -9 - / 5 1 /5 - /5 - 6

22 / 8 - 7 -7 3 4 3

23 167 7 - /

21 1 7 2 72 2+ 7 + 2

25 12 . - 0 0 -7

26 9 - 25 - 412 4

27 9 - / 8 8
28 76 .- 25 /6 - 7 + /3

f9 5 / -9 / 9 5

30 13/ - 12 + 3 k 4 - 6

31 /- -7 1 3 1 20 -7

32 353 - -+ -2 7 10 -

35 333 - - + /5 9 -13

3118 5/
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Based on the results of the previous paragraph, we put

4=4,1 cs a&.z s*jir d3 ( , 13= C At aj d3I u (2.41)

and by the methods of harmonic analysis, we find the coefficients
Al, A2 , Bl and B2 and then the remaining terms ua, ub. Thus we
obtain

,, =.- O'lODS ID"0.02/ , -0oo 0007107"002/ /143

190C - 3 4

AI/=.- O 9 7 0,0031 4 2 -OO/IXT1± 0"003/

1 = - o,0,/o + o00"ooz/ / = -ooooU- o, o2

From this, using (2.10), we find for 1900-1921

. , o/ ! o"oo.9 = ,0001/o2 ' o, ooT ,/7 0=o,'. t
" U-

and for 1906-1934

4 ,/= q0/St o"o = -0,0008 0ooo ooo,"3 ,= 3; / /= '2t 0 .O7

These values agree with those given in Chapter 7.3.9. From
these results, we are led to the conclusion that the delay in
phase is special in the nutation of latitude. Also at the same
time, these results give certain indications of the general
turning of the ellipse of nutation. Usually in the construction
of this ellipse we use a system of Cartesian coordinates on a
plane touching the celestial sphere at the mean pole of the Earth,
which is also the coordinate origin.

The axis 0Y has its direction along the mean equinoctial
colure from the pole of the ecliptic and OX has direction along
the colure of the celestial equator toward the vernal equinox.
Then the equation of the ellipse of nutation can be put in
parametric form
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Because we have reformed the usual expression (2.2) to
(2.3), it is necessary to substitute the following expression
for the previous one:

x, ' (-/o (2.42)

From there, using the formulas of analytic geometry, we find the
value of the angle between OY and the longest principal axis of
the ellipse of nutation

If we substitute the values found for the constants

/144
y=- 6'S * 2,'9

Hence, the positive end of the large axis of the ellipse
of nutation is divided by the equinoctial colure by 6'8 toward
the vernal equinox.

The theory of the rotation of the Earth has not yet given
any indications of such a turning of the axis of the ellipse of
nutation. This gives rise to some doubt about the results
obtained above. We think, however, that it will be useful to
keep this result for a further development of the theory, based
on our new data, for the internal structure of the Earth.
Substituting the arithmetical values in (2.8), we obtain

8= -6 ~80 Cos a. Si 3{-3'S)+9"/Q8 Ji Q coD d (2.44)

6.3.13. Comparison with the Results of Other Authors

The new value that we found for the nutational constant is
one of the results of the solution of more general problems
from the determination of the coefficients of the main terms
of nutation and the delay (difference) in phase. Until now,
the theoretical value of the proportion of the axis of the
ellipse of nutation n had always been used and the initial

phase 81 and 2 had been taken to equal zero. Thus there does

not,:exist immediate benefit from a detailed development of the

.120c
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results obtained on the basis of the hypotheses mentioned.
So we give below a sum of the values of the constants of
nutation for comparison.

Table of Results

In connection with these results, we find it necessary to
make these notes. Newcomb's value for the nutational constant
is the mean value of the 27 values found by other authors. Of /145
these ten, and not one, as was incorrectly stated by Idelson,
are smaller than Przybyllok's value, and five are smaller than
ours. The accuracy that Kulikov claims his values have for N is
overestimated, because in order to find this value, he considered
results of different methods from,.the same original information
as independent of each other.

T. Hattori used the same original data for the determina-
tion of the nutational constant which we used for the solution
of most problems (of the general problem). He made his work
known only after our computations, which agreed satisfactorily
in the choice of methods of solution and in some special
problems arising in the reduction of the original data. For
example, Hattori gave his latitude in the CG system, and in the
same formula (1.1), and found the nonpolar variable of the lati-
tude in common for the three stations. But this is exactly
that magnitude we have denoted by Fl.

Hattori did not include the slow changes in latitude
common for all pairs, and he did not try to determine the errors
in the gradual value. But we saw that sometimes this fact becomes
apparent. We also noted that in four cases the corrections
in proper motions do not agree with those of Hattori. For this
reason, we give the values of Ap (the ones found by us are in
parentheses).

Number of pairs Epoch

24 /928.0 -0,oo03 (-0o"oo)
5 1903.0 -o"022 (-0o*oG)

72 1909. o -o.ooq ( o. oo~
86 /9/.0 0. oo (Dooo3)

For the determination of the constant of nutation, Hattori /146
used various methods.
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In Chapter 7.3.11, a first step was made toward a separate
determination of the main nutational terms. Later Orlov changed
the determination of these coefficients from the material of
the observations at Pulkovo with a zenith telescope from 1915-
1928, and he found that no correction is necessary. Orlov's
research gave rise to some doubts at the beginning. As initial
conditions he used the instantaneous values of latitude given
by Koral. For the determination of the correction for the
graduated value, Koral applied -- as we did -- the method of
comparison of latitudes which are taken separately for pairs
of positive and negative zenith distance. But in the pairs
selected, he did not take into consideration obtaining results
which are generally free from the probability of errors in the
constants of the nutational terms. This could lead to the con-
clusion of weakness in the 19th term. Actually, it seems that
this does not occur. Although in a few cases, the change in
the mean values of cos a and sin a for groups of opposite sign
zenith distances was taken into consideration in the estimated
values, these change from year to year, and nyo t sys- :r~
tematically the same as the change of the sign.

The only effort toward investigating the subject of the
existence of phase difference in nutation was done by Morgan.
He analyzed the observations of parabolic stars in Washington
from 1903 to 1925; he used equations of the following form:

dd l - r a/0s ' a3 dJ tdcoj Q ) NdY(lJin d2 - 0,31 aol d) /dA v

where a' and b' are constants of reduction. '(2,.6) has such
a form if we substitute in it (2.7) and take

/147

From the observations of declination, Morgan found that
Ae = 0'.0 ± 4'.8 and from the right ascension observations that
ae = 13'.2 ± 3!.6. The difference between these two values
together with the mean error of each one of them gives rise to
doubts of the reality of Morgan's results. Morgan himself had
the same doubts, so he did not publish the results of his
computations and restricted his announcement of them.

The constant of precession, the ratio of the masses of the
Earth and the Moon and the constant of nutation are connected
as is known by one certain relation which is determined by the
theory of rotation of the Earth. By using this relation, we
are able to find the theoretical value of N if we assume that
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the two other constants are known. The value determined this way
is greater than the one determined by the observations. We can
also note that the new value is different from the theoretical
value by a quantity two times greater than the value 9".210
which was taken in Paris at the 1896 meeting and which has been
applied up to now in the reduction of the apparent position.

6.4. General Remarks /149

The chapters discussing the examination of the observations
cover essentially two parts and deal with two phenomena. The
development of all the observations which are concerned with polar
motion would also indicate the influence of this phenomenon on
other phenomena. This would be very useful for those who investi-
gate polar motion, because they probably could.get results which
are not yet known and because the research up to the present would
be applied, and this is the objective purpose of an applied
science. We are not going to investigate these in detail. We
shall, however, give a brief summary.

Astronomical data are composed of the "ancient" observa-
tions (1000 B.C. - 0), the new ones (1680-1950) and the modern
(1950 - present). We separate the last ones because of their
homogeneity which is necessary for statistical study. It is
important to mention that astronomy was developed by the
Babylonians and the Toltecs (ancient people, from South America).

The Greeks gave the first scientific basis for research,
while the previous peoples continued the development of
astronomy with the help of astrology, sorcery and prediction.
However, the Toltecs had the most complicated and the most
accurate calendar in history, more accurate than the Gregorian.

The history of polar research appears to be large and com-
plicated. The main result (Munk) is that the problem does not
have a solution, but is rather a progressive approximation.

From indications of dynamics and reology, it seems that /150
the easiest way is to determine satisfactory forces which act
on the Earth and thus predict the future positions of the pole. More-
over,in order to solve the problem of the pole, we must take
into consideration many other factors, such as the deformation
of the planets and the Moon, the solar wind and magnetohydro-
dynamic phenomena of the outer portion of the atmosphere due to
this wind, the clusters of magnetic fields, and all the phenomena
referred to already in various chapters. It is the resultant of
th6 other sciences.
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TABLE 30. /148

.R A-a lIa _ Fi DJ Fz F I F F F F
/ 2 j 4 _5 & 7 8 9 Io I

Paip- I
6 8 9 A 882 1/8 989 - 995 990 t 8 i12 1 6
7 7 1 856 // 962 958 962 -22 -
8 6 6 897 106 999 9 919 - 8 + 3-1/0
9 4 5 931 100 /031/ 967 975 -15 3 -r7
f0 3 3 928 90 IozB 98V 992 0 13 - 1

4 1 2 2 892 88 986 956 964, -3o -8 -
12 1 / 929 /r~ 10o89 /OJo 037 l-o 1- 5/ + 39
13 23 0 920 Mf6 083 1002 1007 7 if 1  + 6
4 22 22 .927 158 109o 1002 1003 + 1 + 3 o

Is 2 2f 9 0 07 985 98/ -23 -52 -2

16 /9 20 960 62 1135 toIs /a0 4 4/ 4 3/ -40
17 18 18 990 16Q HOit o030 O02 Z 4 T /F
1B f7 17 87Y /66 1039 918 988 --2 -34 - '24
19 /I 16 859 168 1021 974 too - 13 _ 27 -13

20 / 1 goo 170 96 98 974 -4 3 -59 1- 43

21 13 13 761 /12 9.1 9/2 96, -f -2z - 3

22 If2 2 737 268 /007 lo/o /OJrr f 3 7 F f
23 4 /1 757 260 1023 1022 f 62 -8 i 33 + 38
29 9 9 is , 1 25 1 o/, /0 o f t I 26 i- 1"
25 8 ? 748 240, 999 1001/ 037 -

26 -7 26 1fl 4 /047 O /082 t 50 58 SY
27 .5 6 .% 228 974, 1 9 / 1009 - 2 -/4 -2
28 ~ 74 74 ZZo 961 969 994 1-43 -29 -4
29 3 3 78; 2/21 995 938 /030 -/o i 3 - 9
30 / 2 8&8 20, 1016 /019 /o r +If #2/ i-12
31 i 0 813 /9 M 003 /00 /o103 - ti -/
32 23 23 803 /8 988 990 1032 - - /0 -13
33 22 22 O/ /8o 10t9 1021 /of4 i46 +/6
39 20 21 4-01 +12 j 971 972 /t/9tr -7 -9i -Jr

Pal- 2
0 /6 17 48W7. +/06 1 971/ +939 -909 -60 -5-7 -47
/ f5 /1 909" i 04 1007 984 954 -18 -21- 9

2 413 1 910 /02 /004 989 959 -17 -22 -/2
3 12 f3 878 /00 977 969 939 - 40 -48 -39
4 // 930 98 /027 1023 915 z12 + 2 - q
5 9 /0 890 96 983 982 964 -23 -32 -30
6 8 9 963 96 /0o8 /050 /0oS 56 o60 +60

S 8 90 9 992 91 995 + 2+ 9+
8 6 6 936 92 (024 1/20 1028 32 14 3 4138
9 4 5 933 90o 023 (017 1025 +25 +37 +33

10 3 939 88 /03 ) 2 4 37 +49 *-06
S 2 2 89 86 -83 98q 992 - i- 2 -4

12 i 941f 65 /012 /o0o /10ZI + 4/7 25 +6
3 23 94 o /ool 1/ 1026 +1/3 48 +t
1/ 22 23 913 55 973 /106 100? -/0 - 8 +3
Y . 20 1 I 929 50 919 1025 1021oz / -3 +/5

1 9 zo 889 5 927 986 979 4 / -51 -29
1/ t8 19 957 i 40 994 1065 /o60 +33 -23 +49
18 17 1 60 3' 693 975 985 - 4Y -57 -28

/49 1 886 30 910 /002 f029 -5 -1-7 -/
f-o r9 1 827 25 846 948 994 -54 -23

11 , /4, .bq1 .2 2 , I33 A5 9q 1-//01 -37 -4'9 -18
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On the other hand, research ori the phenomenon gives infor-
mation on the original shape of the Earth, on the surface
distribution of the solid mass, on the magnetic field of the
Earth, the elasticity or plasticity of the Earth, and on the
inner part of the Earth and other things. According to this,
we can estimate the extent of research which remains to be
done, and sciences like reology, theoretical mechanics, paleon-
tology, and others, from which we will ask information and
to which we will give suggestions, will be utilized.
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7. GENERAL INTRODUCTION TO THE THEORY OF ELASTICITY /151

7.1. A General Introduction to the Theory

The presentation of the phenomenon and the method of obser-
vation constituted the first part of the present paper. The
theory will be the second part. From a more general point of
view, we could say that in the first part we followed the
analytical procedure, where we obtained our conclusions from
the observations made. In the second part, we will follow the
synthetic procedure, i.e. we will try to find that model of
the Earth from which it is possible to predict, according to
physical laws, the effect of the influence of physical forces
on the Earth in such a way as to agree with the observations.

There are different theories, all of them based on the
behavior of the Earth under the action of the rotational forces
as well as of other forces due to different phenomena (meteoro-
logic, etc.). In general, a body can be considered as rigid,
which never happens, or plastic or elastic. If the deformations
are very small, it can be considered as rigid. This is theil
case with the Earth, and for this reason the first complete
theory which was developed assumes that the Earth is a rigid
body. The more recent theory, which will be presented in detail,
assumes that the Earth is an elastic body obeying Hook's law.
Even today, this theory is not completely satisfactory, and
new considerations are under research that will be referred to.
Because the theory is based on the elasticity of the Earth,
it was necessary at the beginning to present a few points
about the theory of elasticity. This was considered necessary
because of the future use of different concepts, and because
of the fact that in this way we will have a more general point
of view for our study.

Throughout the presentation of the theory, tensor analysis /152
is employed; therefore, it was necessary also to give an intro-
duction to the methods of tensor calculus. We also tried to
combine the theory of elasticity with tensor calculus, which
was necessary for compactness of presentation. All these were
presented in detail, taking for granted that the readers
would be faced with the same difficulties which faced the
writer initially.

The development was also based on the concepts which
will be used below.
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7.2. Introduction to Tensor Analysis

Tensors play an important role in physics, including the
general theory of relativity and the electromagnetic theory.
Also, one of the most important applications of tensors is to
anisotropic solids.

As an initial example, we will consider the flow of
electric current. Ohm's law can be written as

j = aE (1)

where j is the electric density, E the electric field, and a is
the conductivity. If the medium is isotropic, then the conduc-
tivity a is a scalar quantity, and for the x component,we have,
for example,

jl = OE1 (2)

But if the medium is anisotropic, as happens in many crystals,
the electric density may depend on the electric fields, of all
three directions. Considering a linear relation, we can write
Eq. (2) as:

/153
(3)

and in general j - 6! Et / r12 Ez 6 E

(4)

For three-dimensional space, the scalar conductivity a is
given by a set of nine elements, aik

(1 66,,
/ ~gz 63
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This set of nine elements forms a tensor. For any case, a set
of nine elements does not necessarily represent a tensor, and
a proof is needed in order to conclude that it is a tensor.
Therefore, a tensor is used for quantities which need nine
functions for their definition in space (i.e., when we take
account of many influences).

A quantity which does not change withda rotation of the
coordinate system, i.e. which is invariant, is called a scalar.
A quantity whose components transform according to the formulas:

Xl = 0r(/ Q/ '2 Zz

X2 XrzI*r aZ2 'Y2

(like the components of the distance of a point from the origin)
is called a vector. We observe that a different definition of
a vector is given from that usually known, based on the trans-
formation of the components according to definite formulas of
rotation. Exactly this property of transformation is adopted
as the main characteristic of the definition of a vector. In
the above definition, we can either use the formula of the
transformation of the components (or computation of differen-
tials - contravariant vector) or the formula of the transforma-
tion of basis (or computation of partial derivatives - covariant).
The difference is that we have either axi'/axj or axj/axi'. //154

Since in a Cartesian coordinate system the two expressions
are identical, we will have

where :AaiX are the directional cosines.

The tensor is a general concept. Thus, a scalar quantity
is considered a tensor of zero rank, and a vector, a tensor of
first rank. Tensor representation is required for quantities
which, in order to be defined, need nm arithmetic quantities,
called tensor components, where n = number of spatial dimensions,
m = rank of the tensor. A tensor is a quantity independent of
the reference coordinate system whose components transform
according to a definite transformation law when the coordinate
system is changed, and this transformation of the components does
not imply a change of the tensor itself, but comes merely as a
result of change of the reference coordinate system. In the
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Cartesian system, we define a tensor through a transformation
relation of the form

di-=l6~ C A k

where j /

Aij = derived components, Akk = given, aik ajk = transformation

law for rotation, e.g. cosines; see Fedorov 6.7.

The above expression is a generalization of the previously
given formula.

Application

Given the matrix T = I7/ , we will examine whether

it is. a tensor. According to the above formula, we will have

714 -ffe C 1K e [k-le
Z

If the rotation is given by 6, we must have T{1 = -x'y'. We

will find out if this component obeys the law of transformation. /155
In terms of the unrotated coordinates, we have

1c V-zZ'=- (rc J iJ9-zfiyZc/t1"

(For regular position j +  change 3 change,,for example, 12 + x2

21 = y2 ). The a are the directional cosines for a Cartesian
system. We therefore have an identity; thus, the matrix is a
tensor.

We have thus far defined a tensor and have shown how the
definition is used in order to find whether a quantity is a
tensor or not. The following properties also come from the
transformation law:
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1. If at a point the components of a tensor are all zero
with respect to a coordinate system, then they are also zero
with respect to any other coordinate system.

2. If the components of a tensor are identically zero with
respect to a coordinate system, they will be identically zero
with respect to any other system.

The above properties are fundamental for tensor analysis.
Thus, we try to express the laws by equating two tensors or by
equating to zero one tensor, because then the change of the
coordinate system does not change the expression of a law or
of a property. Therefore, during the analysis of these proper-
ties, we try to construct a tensor of appropriate order and to
select an appropriate coordinate system. (The relativity theory
of Einstein is based on-the above.)

7.3. Introduction to the Theory of Elasticity /156

In a body in equilibrium under the action of external
forces, internal forces are developed which keep in equilibrium
every infinitesimal element of the body. By changing the
cross section under consideration, the internal forces ,acting
on it also change. They also change in direction and position,
depending on the position and direction of the infinitesimal
element on which they act. The internal force per unit area s
is called stress. We analyze the stress in a component a normal
to the infinitesimal element, called "normal stress," and a
component r tangent to the infinitesimal element, called "shear-
ing stress."

Since our object is the Earth, the introduction to the
theory of elasticity will be given in a form appropriate to our
object of interest and concepts which will be used below will
be mentioned.

The angular momentum of a body with respect to an arbitrary
point 0 is the sum of the angular momentums of all material points
Ei of the body with respect to 0. The angular momentum Ci of
any point Ei of mass mi is given by:

The velocity vi in terms of the. velocity of the point 0 and the
angular velocity will be
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4 6o o (2)

The angular momentum G of the body is the sum of the angular
momentums Gi of all its material points.

--- 2 m, l ( 3 )

where =

We can express the angular velocity
w as well as the distances ri in terms of
their components with respect to the(three /157

4W vectors

Substituting in Eq. (3), we obtain

, - ,.~ ~''i4+. ,w, t(, 4 , 2 (,. r, e ,/ 7) _ \

Introducing the moments of inertia

and the products of inertia

)Z2 = ~ 5'd' ?23 = -A2 I Z12 Xr 3 / =3,-)/I-g'i - Ui(Z,

relation (4) takes the form (5):

+-= dIo ' CO, 4 ),W2 . -OI ,) e,, (,h,1 fw2 6)2/27 + 3 )j2ez 13
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Equation (5) gives the angular momentum of a body in terms of
the moments and products of inertia with respect to the system
Oxlx2x3 and of the projections of the instantaneous angular
velocity with respect to this system. If point 0 coincides with
the center of mass -> r = 0, and if point 0 does not move
+ u(o) = O. In these cases ±

. (6)

Q G ? ( JI "' diz? W.' * aY3 ) if 4 (1),-Y t 6J2 i23 J3) e.Jd,/ p / /
If the projections of the vector G in our system are

4;1 62,G c6 3 ' V- z 2 2 4C 63 (7)

From (6) and (7), we obtain the linear system:

Gz 4 J, P az2 13 + J 3, (8)

The entries of the matrix of the coefficients of wl, w2, w3
of system (8) are the components of a symmetric tensor I of
second rank (XiX = Xii) which is called the inertia tensor.
Therefore, the angular momentum with respect to the center of mass /158
or to the fixed point will be

A/ az? s W- (9)

We also state without proof that if the inertia tensor is
given for a point 0 of the body with respect to a system Oxlx2x 3,we can always find a new coordinate system Ox'lx' 2x' 3 with
respect to which the inertia tensor is diagonal. That means that
the products of inertia are zero and the diagonal elements are
the moments of inertia with respect to the three axes Ox'l, Ox' 2,
Ox' 3 . The directions Ox'l, Ox'2, Ox' 3 are the principal directions
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e and the characteristic roots of
m fI (eigenvalues) are the principal

moments of inertia.

We will now examine the
. stress state,i.first in the plane.

I> The plane stress state at a
- -certain position (x,y) of the

& Xdisk is completely defined by
GP the stresses ax, Txy, y,' Tyx

T x of two cross sections normal
j, to the axes x,y. Given the ,

above quantities, we can obtain

the stresses aE, a&4, an, aTn
6X acting on cross sections parallel

G Tq to the axes E,n of a new coordi-
nate system rotated with respect
to the initial system by an :
angle p.

The balance of moments of momentum yields

cy - CO. d 01

i.e., the relation of Cauchy

yx = Txy (10)

We obtain the expressions of the projections of stress in the /159
5, nT directions of two prisms (above) if it is taken into
account that

/ and then:
6f = 6 Co-p 6Y J 1 2 e1 J (

1 '(6'Y - CA-) JI 713 cr 6 e p JIJ 7 - /

or if we use the angle 2 , we have:

r (12)

(6t -- 6y) Cos 2 (- rAy 'Sb7 ?P12)
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Equations (11) and (12) give the stresses with respect to
the system of axes , n in terms of the stresses with respect
to the system (x,y). Therefore, the symmetric matrixdefines

completely the stress state at a point X6r zty.

Observe that for the definition of the stress state 22 elements
are required (two dimensions). On the other hand, the matrix

Sis obtained from Eqs. (12), which are identical

to the equations of transformation of the inertia tensor for
rotation. Therefore, based on the given definition, the above
matrix represents a symmetric tensor of second rank of a certain
quantity at the point (x,y). Since this quantity describes the
stress state at the point under consideration, it is called the
stress tensor (i.e. Eqs. (12) give the transformation of the
inertia tensors. On the other hand, the one matrix is derived
from the other by a similar transformation. Therefore, as was
shown,in the example, it is a tensor.)

Correspondingly, we have the fact that the nine entry
symmetric matrix

6x Tv zz

defines completely the stress state in space, and is called the
stress tensor.

If we choose as directions of the axes the three principal /160
directions, the stress tensor is diagonalized:

O 6x 0

0 0 62 /

Closing the introduction to the theory of elasticity, we
must point out that the main advantage of the tensors is that,
knowing the stress state for one cross section, we can find the
stress state for any other cross section (it can be proved).
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The deformation can also be represented by tensors. If we
consider the strains ex, Sy of the sides dx, dy of an orthogonal
triangle and the change of the right angle Yxy of this triangle,
the nine entry symmetric matrix represents the strain tensor.
This can be proven, as we have done before, since it obeys the
same transformation laws.

zx 7Jz

We have given the definitions of stress and strain tensors,
considering a material point of a body. Macroscopidally, we
consider that the Earth -- at least in the newer theory -- deforms
elastically. By-this we mean that if the external cause of
deformation is eliminated, the Earth regains its initial (before
deformation) shape. This helps us to find the inertia tensors,
assuming that the principle of superposition holds. Thus we can
obtain for an elastic Earth the inertia tensor as the sum of a
constant inertia tensor I o of the undeformed Earth and of 1

accounting for the deformation. In this way we can find the
change of the inertia tensor due to deformation (see newer theory).
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8. CLASSICAL MATHEMATICAL THEORY OF POLAR MOTION /161

8. 1. Introduction

Before we try to develop the mathematical foundation of
polar motion, we will define certain concepts which are necessary
for the understanding of the following.

1. We say that a system of material points constitutes a
rigid body when the relative distances among all the material
points remain constant during motion. Considering the motion
of a rigid body, the projections of the velocities of two arbi-
trary points on the straight line passing through them are equal.
This is a characteristic property of the motion of a rigid body.

2. In order to determine the position of a rigid body which
moves freely around a fixed point 0 (in general), we can make
use of three angles 4, p, 6, which are called Euler angles. If

we consider a "fixed" reference coordinate
system 0E12; and a system Oxlx 2x3
attached on tie rigid body, and if ON
is the intersection of the plane Oxlx2
with the fixed plane 051O 2 we define

' the angles as:
0 = i ON, i = Nbxl; = 3 X3

It is obvious that the position of
S" the rigid body is completely determined

if the three Euler angles 4, ', 6 are
given.

3. The inertia system is the
coordinate system with respect to which

the laws of Newton hold. The space and time of an inertia system
are homogeneous and isotropic.

4. We consider necessary to state the theorem of balance
of angular momentum. Besides its general application to the whole /162
theory, which we will use for the special case of zerooexternal
forces, it constitutes the basis of the forced polar motion due
to action of forces on the surface of the Earth.

Consider G = vector of angular momentum
0 = angular. velocity
L = external torque

We have G = r a p where p = mv, vector of linear momentum
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dt dt d a't

but

If dt

i.e. the rate of change of angular momentum equals the applied
torque I.

(Note: Newton's Second Law: cP = dp/dt)

5. Consider a fixed reference system O i with unit vectors
ei and a system Oxi with unit vectors ei, moving with an angular
velocity w. Consider a variable vector

I- . 01 t- , , 6 % tad , F, = y, G ei I e 1

We call the "total" derivative the derivative of G with respect
to the system OEi

We call the "relative" derivative the derivative of G with respect
to the system Oxi , i.e.

- j , ei- '-G J +G 3 e3.old,

We take the derivative of G:

-j 6)/ zAe -b662,YJ"t6 Y 36-1e7
then

D, -- 6 e7'/e/ 4VA 6Z e. WAX3e/I
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It gives the relation between total and relative derivative of /163
a vector with respect to a system moving with angular. velocity w.

8.2. Rotation of a Rigid Body around a Fixed Axis

Consider a rigid body which rotates
around a fixed axis,,:passing through the

4i ! point O, with angular velocity W. if e 3 is
the unit vector on the axis of rotation OZ,
then it is

0'

Xj Considera coordinate system OxlX 2x 3where OZ Ox3 and a known fixed direction
O0. Obviously the plane Oxlx 2 is fixed,
and if 4 = Ox, then we will have the
relation 0 = w (8.2.1). The following
formula is given:

/(8.2.2)

.,,i..Substituting in the formula above p1 = 02 = 0, w3 = w,
J3 3 = J

W 01.J,3 e1 ,.J. e/ Je ii/ (8.2.3)

The theorem of balance of angular momentum yields:

dG = G = L (8.2.4)

From (8.2.3) we have:

'i (8.2.5)

I: torque of external forces.

The unit vectors and the angular velocity are related
through relations of the form

1
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Then (8.2.5) yields finally:

123J /j' Z/ -J .2 C- I' d (8.2.6)

If L1 , L2, Lg are the projections of the torque i with respect
to the axes Oxl, Ox2 , Ox 3 correspondingly, from (8.2.6)

3 = Li

a +i 60z  (8.2.7)

- L3  /
Considering Eq. (8.2.1), ' = P , the third part of (8.2.7) becomes /164

J$ = L3  (8.2.8)

Assume that the Earth has the shape of an ellipsoid with
two equal axes. We take as ;, coordinate system Oxlx 2 x3 the
system of the principal axes of the ellipsoid. The products of
inertia are zero with respect to these axes. Thus the system
of principal axes coincides with the system of principal direc-
tions (principal axes of inertia).

We consider that the axis of rotation of the Earth (instan-
taneous) coincides with the principal axis of the ellipsoid and
we assume that the external forces are zero. As external forces
we consider the applied forces and the reactions of the axis.
If the applied forces are zero, then the reactions pass through
the axis Ox 3 and therefore have zero moment with respect to the
axis Ox 3 .

Therefore, L3 = 0. From the equatior J*w = L+ w W = constant.
Also, since the products of inertia are all zero, the remaining
quantities of (8.2.7) vanish, i.e.

L1 = L2 = 0

So we consider the following:

If the instantaneous axis of the Earth coincides with the
principal axis of the ellipsoid and if the external couple
acting on the Earth is zero, then the angular velocity w will
remain constant and the axis will keep its initial position
(dG/dt = 0 - G:= constant).
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8.3. Motion of a Rigid Body Around a Fixed Point with Moment
of External Forces Different from Zero

Consider a rigid body which can freely rotate around a
fixed point 0. Consider also a coordinate system Oxlx2x 3 rigidly /165
attached to the body and 0O1C2 3 an inertial system which we will
use as a reference system for te motion of the body. Since we

have three degrees of freedom, we
need three parameters to determine
the position of the body with
respect to the axes 0O512 3 . We

qu, choose the three Euler angles 4, P,
e. To study the motion of the
rigid body, we will use the
theorem of balance of angular

9R ,momentum, dG/dt = L, where G is
\ /the angular momentum with respect

to the fixed point 0 and L is the
Ntorque of all the external forces

with respect to 0. The derivatives
are taken with respect to the
inertial system 051OE23

We assume that the system Oxlx 2x3 coincides with the principal
axes of the ellipsoid of inertia (coinciding with the principal
axes of inertia-principal directions). In this case, the vector
of angular momentum takes the form

.,= eld2 WIe- J P (8.3.1)

The last relation is derived from (8.2.2) if we set JiX = 0,
Jii = Ji (i X X), where the wl, w2, w3 are the projections of
the instantaneous angular velocity w of the rigid body on axes
Oxl, Ox2 , Ox3 correspondingly and ei are the unit vectors on the
principal axes.

As we have mentioned, the derivative dG/dt is taken with
respect to the inertial system OLi 3 . It was shown that the
derivative dG/dt is related to the relative" derivative of U
with respect to Okyz, by a relation of the form:

(8.3.2)

where - dt 'dt

(8.3.3)

140, el A e , W ?
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If we also take into account that we have

&I 7) 4= /2 e2 ~ " (8.3.4)

and that /166

di di - (8.3.5)

we obtain from (8.3.5) the system:

SL(8.3.6)

Li are the projections of the moments of external forces with
respect to the point 0, on the axes Oxi, correspondingly. Equa-
tions (8.3.6) are called the Euler equations.

The solution of the system (8.3.6) will give the motion
of the instantaneous axis of rotation with respect to the moving
body. If we want to find the motion of the instantaneous axis of
rotation with respect to the fixed axes, we must express the
components wi of the angular velocity in terms of the Euler angles.

8.4. Motion of a Rigid Body Around a Fixed Point, with Moment of /167
External Forces Equal to Zero

We will consider the special case of zero external forces.
Then the moments also of the external forces with respect to
point 0 will be zero. Therefore, the Euler equations become:

S--(w 6-. -o1)1
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This is the case where the fixed point 0 coincides with
the center of mass of the body and the external forces are only
the weight of the body.

If we multiply (8.4.1) by wl, w2, w3 , respectively, and we
add

__;A 5 - O

S= const

Also if we multiply (8.4.1) by Jlwl, J2'2, J3 3 , respectively,
and we add

1. ej+ /Wa;. , #& 3  w3  - (v I/ W COIO = -I

7 r (8.41.3)
SL W! ~= const

Equations (8.4.2) show that the kinetic energy of the body
remains constant and Eq. (8.4.3) shows that the norm of the
angular momentum with respect to the fixed point is constant.
The solution of the system (8.4.1) gives the motion of the
instantaneous axis of rotation and the instantaneous angular
velocity with respect to the body. In order to determine the
position of the body in space, we must have the Euler angles as
functions of time. Since L = 0 (angular momentum constant dG/dt =
= 0), we choose the fixed reference coordinate system O E25b1in
such a way as to have the axis 053 coinciding with the direction
of the vector of angular momentum. Then: /168

System OL ~ -, G = G 'r

System 8.4.4)

But having G coinciding with 0O3, we can find the projections on
Oxi using the Euler angles

i G GsinsinD , p=Gcos sin , G3 = -cos' / (8.4.5)

From (8.4.4) and (8.4.5), we have:
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- G i /

(8.4.6)

and we can express the angles e, , ~ in terms of wi(t)

Scos A ,, ' ta gy- co (8.4.7)

8.5 Analytical Solution for the Free Motion of a Body with an
Axis of Symmetry

In the above, the Euler equations were given for the general
case of a motion and then the case of zero external forces was
considered. Considering now the Earth, we will first assume the
existence of an axis of symmetry because of our earlier assumption
about the shape of an ellipsoid.

In this case, we have the same moments of inertia with
respect to two principal axes J1 = J2 , and if J3 = J, the
equations (8.4.1) take the form:

= l-/lj 3 (8.5.1)

J. = 0 - 3 = constant. Taking the derivative of the first of /169

(8.5.3) and using the second equation:

* =/ 2 D27 0 (8.5.2)

We will solve it:
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The corresponding homogeneity is D2 + B2  0 D = iB. So
the solution will have the form

. e -/ si,., (8.5.3)

Substituting in thefirst part of (8.5.1) and performing the
calculations, we obtain

A, r are constants, defined by the initial conditions.

We finally find, for the position of the vector of the instan-
taneous angular velocity with respect to a moving body:

(because mi = projections of w with respect to Oxi). Since m3 =
= cose, it is j i = constant. We observe that the vector
(sinBtel,+ cosBte 2 ) rotates with respect to the body with constant

angular velocity B. That is, the position
of the instantaneous axis of rotation is
not fixed with respect to the moving body,
but it rotates around the axis of symmetry

,Z Iof the body with angular velocity B. There-
fore, it completes a full rotation in
time

2n 227

Having found the instantaneous angular
velocity with respect to the body, the

motion of the body in space is determined with the help of Eq.
(8.4.7), i.e. of:
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w3 = constant + 0 = constant; also tan /- tant-= z/ /170

Therefore, 4 = constant;- 4 = t, G = modulus.

So we have

e = constant, , ' (8.5.6)

Therefore, the rigid body moves in such a way as the axis Ox3
has a constant angle with O03 (e = cose) and the angles 4, *
are linear functions of time. The instantaneous angular velocity
in terms of the Euler angles is given by the relation

40 = 9e 3 6s (8.5.7)

where n = unit vector of the axiS ON, if a is the rotation vector
with respect to the axes ON, O03, Ox 3 . Taking account of the
previously given relations,

-5 T/ (8.5.8)

Therefore, the vector w lies on the plane of the axes Ox3 and O03,
and because the plane of the axes O03, Ox3 rotates with angular

Velocity $ = 1, the vector = )

will rotate with respect to the fixed
system 051 around the 053 axis, with

Sthe same angular velocity, and will
'z \ describe a conical surface. With

d 4respect to the observer on the body,
e ) the vector w describes also a

conical surface with axis Ox and
AI constant angular velocity B (8.5.4).

The two cones are tangent along the
S instantaneous axis of rotation

zr / rolling on each other. This motion
/ of the body is called regular pre-

cession. The angle a between the
vector of the instantaneous angular

velocity.w and the axis Ox3 will be:

tang-
.(8.5.9)
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)3 , COS I,-O 'Co
Also 6  G

(8.5.10)

and then Eq. (8.5.8) becomes

S(...5.11)

Substituting (8.5.11) in (8.5.9), and taking account of /171

e3 3 cos-1= sin- tan tan / (8.5.12)

From the relation (8.5.12), we have that if J < J1 + a < e (Fig.
1), J > J1 + > e (Fig. 2). The above are true for the case of

the free motion of a rigid
body with zero external forces,
or for the case of the motion

X- point when the moments of the
W external forces with respect

to the point are zero. But
all the above are also applied
to the case of the free motion
of a rigid body in space,

O x. o -. when the applied forces have
zero moment with respect to
the center of the body,
because again system (8.4.1)

Fig. 1. Fig. 2. holds. This happens, for
example, when the applied

forces are derived from a homogeneous gravity field and the body
has spherical symmetry with respect to its mass distribution.

The case of the motion of the Earth is an example of the
above, because we have imposed the following conditions:

1. System Oxi = system of principal axes of inertia (princi-
pal directions).

2. Vector of angular momentum G = Ge 3 , i.e. parallel to O03.

3. Existence of an axis of symmetry.
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4. The axis Ox3 is tilted.

5. Absence of external torques and forces derived only
from a homogeneous gravity field.

Therefore, for the case of the Earth, considered as an
ellipsoid by revolution with J1 = J2 < J, moment of inertia with
respect to the principal axis of symmetry given by J and having
the axis Ox3 tilted, it was proved that this axis will follow a /172
precessional motion with angular velocity B with respect to the
moving coordinate system Oxi. And since -J1/(J1 - J) = 300 and
w = w, where w = angular velocity of rotation of the Earth, we
will have that the instantaneous axis of rotation of the Earth
will not be fixed with respect to the Earth, but it will rotate
around its axis of symmetry completing a full revolution in =300
days (304). That is, the vector of the instantaneous angular
velocity of the Earth sweeps a conical surface with respect to
the Earth with xkis:)the axis -of symmetrybof:thehEarth,. Thegamplitude
of this rotational motion is very small, on the order of a few
meters.

Summarizing, indthe absence of external forces, if the
axis of inertia of the Earth coincides with the axis of rotation,
the Earth will continue to rotate around the principal axis of
inertia; otherwise, it will describe a conical surface with its
center the center of mass of the Earth and axis Ox3 the principal
axis of inertia. But in reality, the period of motion of the
instantaneous axis is different, because the Earth can not be
considered as a rigid body, and because there are external forces
acting on it.

8.6. Theory of Forced Motion

In this chapter we will examine, for a rigid body, the results
of the action of external forces which appear because of physical
phenomena.

Given G = vector of angular momentum,
S= angular velocity,
L = externally acting torque,

we will have: G = r -/ p where p = mv, vector of linear momentum /173

A/ I^ U1 4 ,. . P / but
- dpB

(by definition, EF = d B'
& < Newton's law)
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i.e. the rate. of change of angular momentum is equal to the
applied torque.

SL-i

This means that the torque applied on the body changes the
magnitude of the angular momentum in the direction of the torque,
and also it changes the course of the angular momentum. Obviously,
the second term is significant only when the direction of the
torque is different from the initial direction of the angular-
velocity. We consider a torque applied on a body which can
rotate around an axis able to move (rotate). Any torque can be
analyzed in two components, one in the direction of the axis and
one normal to it. The first component, having the direction of
the rotational axis, coincides with respect to direction with
the angular momentum. The result is the change in magnitude of
the angular momentum.

Of greater significance is the case of the normally applied
component. We will analyze this case in detail, because exactly
this changes the direction of the axis, and it is the main reason
for it. It is therefore enough to consider only the applicationof a vector of normal torque, since the parallel vector will only
change the magnitude of the angular momentum. For definiteness,
consider a rigid body s h a p e d by revolution which can freely /174
rotate (top).

L 6

Fig. 1 Fig. 2.

Assume E is the angular velocity. If external forces are
not applied, the body will move with a constant angular velocity
T and constant angular momentum. Consider that on the one tip
of the axis of the disc a perpendicular force is acting. It
will exercise torque L = r ^ F where r is the distance of the
point of application from the center of mass. (We consider the
center of mass as the origin.)
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Due to this torqe, the. vector G will change (as is already
shown). This change is L = dG/dt.

Considering L.constant, we obtain AG = LAt.

But the change in the vector of angular momentum will be
in the direction of the torque; therefore, it will be perpen-
dicular to the initial vector (see Eq. (2)). The final result
is given from the vector sum G + AG, and it is

AG
tanae = ~ Ae (rad)

i.e. the initial vector rotated an amount Ae. Thus the application
of the torque on the disc has as a result the change in direction
of the angular momentum.

Assume that the acting force F is constant and continuously
perpendicular. Therefore, torque L will also be constant and,
moreover, it will lie on the horizontal plane. Therefore the
rotational axis will rotate on the horizontal plane with constant /175
velocity, because L is constant. We therefore observe that the
external torque applied on the axis of rotation of a rotating
disccauses continuous rotation of this axis around an axis per-
pendicular to the initial one.

A.6 deThe velocity of rotation T will be given by 0 = A- - dt

But we have shown that AG = LAt and tan6 = Aer = AG/G T Q = L/G.
That is,the magnitude of triangular velocity of the rotation of
the axis is equal to the ratio of the magnitude of the external
torque over the magnitude of the initial_angular momentum (norm
of "resistance"). The angular velocity T is called velocity of
precession of the axis of rotation, and it is perpendicular to I

U, i.e. L = GA G. Also taking account of the increase in angular
momentum because of the parallel component, the total effect of
the action of the torque on the body will be

S= ~ G (differentiation G = CK)

The phenomenon described above is fundamental for the theory
of forced nutation, i.e. of the nutation of the pole due to
externally applied forces (meteorological tide).

From the previously. given relation
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i.e. the result of the externally acting torque on the velocity
of precession is proportional to its. value.

9. A NEWER MATHEMATICAL THEORY OF THE MOTION OF THE EARTH

9.1. Introduction

The classical theory of rotational motion, based on the
assumption that the Earth is a rigid body, was completed toward
the end of the last century. Around 1882, Oppolzer obtained the
formula of precession and nutation in a form which has been used /176
up to the present. Therefore, reconsiderations of the theory
appeared only under the form of improving the accuracy of the
values of certain constants entering the formulas. In this
theory, certain important inaccuracies and omissions were not
discovered. It was also not noted that the results were different
in some cases from the observations made. It was already recog-
nized that the Earth is not a rigid sphere. But no serious
attempt was made to reconsider the theory on the basis of new
assumptions about the mechanical properties of the Earth.

This point of view changed when the 14-month change in
latitude was discovered. With harmonic analysis of the results
of the latitude observations, Chandler tried to make an accurate
evaluation of the Euler theory of polar motion. In any case,his work played an important role because the results of the
observations were in disagreement with the theory. These had,-
shown that it was necessary to reconsider the main hypothesis of
the rigidity of the Earth. At the same time, scientists obtained
a criterion for the validity of ,another assumption about the
properties of the Earth which would yield a theoretically predicted
value of free nutation equal to the observed one, i.e. of 14
months.

The above criterion was used in order to test the assumption
of the liquid core of the Earth, and finding that this hypthesis
leads to a reduction of the free period, we conclude that this
assumption was wrong. Newcomb considered the elastic deformation
of the Earth during its rotation and showed, from simple hypo- :/177theses, that such a deformation indeed increases the free period.
This was proved in the work of Schweydar, i.e that this increase
in period was the only indication of the elasticity which would
be discovered in analyzing the astronomical observations. In
other cases, the Earth could practically be considered as rigid.
Though the formula for precession and nutation was initially
obtained under the hypothesis that the Earth is rigid, we could
as well apply the same procedure when we consider the Earth as
an elastic body.
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New considerations would be necessary if some discrepancies
existed between theory and observations. Then the theoretical
research would have a specific goal, and it would not seem to
be simply a search for solutions of abstract problems of
mechanics. Therefore, it is desirable to have a complementary
comparison between the predictions of a theory which considers
the Earth ideally elastic and the astronomical observations.

The present work is an attempt to make such a comparison.
In Chapter 1 the theory is given, using vector and tensor analysis.
To justify this, an abandoning of the classical procedure in
deriving the equations for precession and nutation is enough to
show that the tensor analysis method is generally accepted in
the mechanics of rigid bodies.

In only two works is the effect of an externally applied
force on the rotation of an elastic Earth considered. These
works are by Schwedar and Sekiguchi. The work of Sekiguchi was /178
based on the results of a previous work of his, in which Woolard
showed that there is an error in the principles. In what (,
follows, use will be made of the work of Schweydar, as a way to
check on the results that we obtain using other methods. Note
that we should decide which of the theoretical results are more
important for comparison with the observations. We first
consider the constant of nutation N. In a compact presentation
of this matter, Idelson explained the importance of the following
paragraph. "In 1930 Sitter took as the value of N

N = 9".2075 ± 0".0055

In any case, by his method the value N = 9".2181 was obtained.
This value was chosen as a consequence of the theory of a rigid
Earth with the value of precession and the determination by I,
Hink of the precession of the sun and the ascension of the moon,
i.e. it is a theoretical value. Later, they incorporated a small
change. Jakson considered this discrepancy as 'one of the most
important discrepancies of the constants of the solar system,'
and stated that the relative results in the precession could not
compensate for the results of the relativity among the constant
relationships. Bronwer noted that de Sitter unsuccessfully
searched for the solution of the problem during his last year.
And, even more, "from the previous summary it can be seen that
the matter concerning the constant of nutation has not reached a
final conclusion." The analysis of the enormous amount of
material given by I.L.S. gives a value for N smaller than the one /179
theoretically predicted.

Recently Jeffrgy tried to explain the discrepancy by con-
sidering a fluid core in the Earth, and as far as we know, he is
still continuing his research. The results of .Przybyllok, which
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Idelson considered to be very important, were taken from infor-
mation by I.L.S. during 1900-1925. We now have much more
information. The results of the I.L.S. published up to the
present cover two cycles of nutation. It seems to us important
to determine first the constant of nutation, and then to find
whether the new result for N approaches the theoretical value
or deviates from it.

If the value adopted for N is wrong, the period of 19 years
would be discovered in the nonpolar change in latitude, but this
might have a cause which is shown in Chapter 19. Our problem was
to make a check, as complete as possible, of the theory of the
Earth's rotation.

This is not only restricted in determining N (the coefficient
of the term in obliquity), but we will also examine if there
exists a phase of deceleration, and if the observations verify
the ratio of the axes of the ellipse of nutation. However,
intense research has been carried out on theseimatters, but no
definite answer has been given.

The theory of precession and nutation,leads to concrete
relations among the constants of precession and nutation and
the coefficients from all the other terms in the formula for
nutations and right ascension and declination. So, if the con-
stants for precession and nutation are known from observations,
all the other coefficients are determined by accurate computa- /180
tion. There was no doubt about the accuracy of the theory, and
there were no indications, in trying to determine them, of other
coefficients different from the observations. But this kind of
determination, as we have already said, is of interest if it
constitutes a way to check the theory. Recently Sekiguchi,
Morgan and Popov independently tried to determine the range of
the 14-day term, from a variety of latitude observations. The
basis for such a determination is the following. If the range
from a 14-day term obtained from the theory differs from the
correct one, a term asin(2C'- a) appears in the change of
latitude, where (lis the mean length of the moon and a is the
mean right ascension of the pair of stars (or the right ascen-
sion of a zenith star). It must be noted, however, that the
diurnal term of the moon in Oppolver's expression for forced
latitude change has exactly this formula. This leads to an
uncertainty in the representation of the results of analysis of
the observations. A possible assumption, made by Morgan, is that
the theoretical value of the coefficient of this term is not
subject to correction, and its difference from the observed
value can be considered as a correction of the 14-day term. But
certainly, we can not do that. Oppolver took the expression
for forced change of latitude as one of the results of the theory
of the rotation of a rigid Earth. In Chapter 1, we prove the /181
corresponding problem, starting from the hypothesis that the
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Earth is an elastic body, but since our intention is to check
this hypothesis, we can use the theoretical expression for forced
change of latitude only for comparison with the observations,
and not for correcting the results of these observations. The
uncertainty mentioned above can be overcome in the following way.
The formulas for precession and nutation describe the motion in
space from the angular momentum of the Earth. In Chapter i, we
will see that these formulas do not change by changing the
hypothesis about the mechanical properties of the Earth. This
means that if a term asin(7 - a) is discovered in analyzing the
observations for latitude, this is recognized as something
corresponding to the diurnal term of the moon. Thus, the obser-
vations must answer the following questiont:

Does forced polar motion take place according to the
theory of an elastic Earth?

This matter is analyzed in the third chapter. We will not
attempt to construct a new theory on the basis of other hypo-
theses about the mechanical properties of the Earth. However,
we will consider briefly the hypothesis of the liquid core of
the Earth in the last chapter, where we use the results of the
previous chapters in order to derive certain conclusions about
the interaction between the core and the crust.

The initial conditions for all the above computations will
be the result of observations of the pairs of stars by Tolcott's
method. We call the center of the arc of a great circle connect-
ing two stars the center of the pair. When we say "declination
of a pair," we mean the declination of the above center (exactly /182
as in the expression "declination of the sun," etc.). Obviously,
it is equal to 1/2 the sum of the declinations of the stars which
constitute the pair.

We similarly define the terms "zenith distance'! and "right
ascension" of a pair. Sometimes we will use abbreviations, when
this does not lead to any confusion.

1. About classical theory.
2. How it was abandoned (Chandler).
3. Comparison of elastic-rigid.
4. About the value of N.
5. Jeffrey + core.
6. 14-day term + elastic or rigid?

Summarizing what we have said in the introduction to the
newer theory, we can observe the following. The classical theory
based on the assumption of a rigid Earth is not valid any more,
and this was proved from the period Chandler found. The newer
theory accepts that the Earth is an elastic body. This theory
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seems to be valid. Indeed, Newcomb, taking into account the
elastic deformation of the Earth, showed that because of this
we have the increase i n period found by Chandler.

After that, Schweydar showed that this increase in
period is the only manifestation of the assumption about the
elasticity of the Earth. Therefore, in developing the theory,
such an influence must be shown, and also we must try to find
other possible indications of this hypothesis. Afterward, we
will compare our results with those of the observations in order
to draw conclusions for the validity of the theory. We must /183
therefore examine whether forced polar motion takes place
according to the assumption of an elastic Earth.

We have already noted that we have certain disagreements,
as, for example, the value of N (constant of nutation). There-
fore, it will be necessary to improve our assumptions. For that,
we will consider the relationship between the crust and core
of the Earth.

When we saythat the Earth deforms elastically, we essentially
imply small deformations obeying Hook's law. But this deforma-
tion causes change in the inertia. And exactly this change in
the inertia has as a result a n increase in the period. So our
main concern is to find the change of inertia tensor due to
elastic deformation and to substitute this new tensor into the
equations of motion. Exactly this is carried out below.

9.1 [sic] Deformations

Before we present the newer theory, it is necessary to
mention a few things about the concepts which made the newer,
theory.onecessary. That is, about the general deformation of the
Earth due to the gravitation fields of the Moon and the Sun (of
a tidal nature). The following are also a first introduction to
the theory of plasticity.

9.1.1. General Deformation of the Earth

The real difficulty comes from the fact that our research
object is the Earth's deformation. For cases where the wobble
is on the order of 1 year or less, and for a purely elastic
deformation, the description of the deformation is made by /184
introducing the Love numbers. With an appropriate choice, a
variety of problems can be solved with notable ease. But this
is a misleading situation, because the corresponding elasticity
problems have been solved in such a way as to make the Love.
numbers appropriate.
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Considering the general problem, we could tolerate certain
deviations from the theory of elasticity. In any case, the
choice of a purely inelastic model for the Earth includes many
assumptions, and the exact solutions are not easily attainable
and not worth the effort of obtaining them at the present state
of the art. Kelvin assumed that the Earth behaves elastically
for deformations of a small period, while Darwin assumed that
the Earth behaves plastically only for small forces. Today,
our standpoint, with regard to the stars, remains the same.
Only for some deformation problems, small progress has taken
place. In the previous chapter, we presented a few points about
the theory of elasticity. As far as plastic deformations are
concerned, the relations are relatively simple, if the elastic
stress is small. Thus, we, can have deformations remaining, but
the elastic strain is still constant: and small. This is the
easiest case in the theory of plasticity.

However, in the case of the Earth, the total elastic strain
is often very large due to hydrostatic pressure. For this reason,
we assume that the strain is composed of two parts, i.e. of one
large initial strain due to the self-attraction of the material
elements, and one small strain due to small changes in the forces
acting on the system. Of course, we are interested only in the /185
superimposed small strain. The value of the plastic deformation
is

"Cd , (1)

where dij is the total value of the deformation and ei" is the
elastic strain. A material is plastically deformed if aij 3 0.
The total applied stress in the Earth's interior is

- U V 1 j (2)

where p is the hydrostatic pressure.

Tii is the elastic stress = *ckkdij + 2ipij, X, p = elastic
constants. sl is the stress due to friction. This depends on
the model of he Earth. The only force on the Earth which is
in hydrostatic equilibrium is the hydrostatic pressure. The
distribution of the density at any point in the Earth defines
the size of this pressure. Today, we initially consider the
Earth in hydrostatic equilibrium, and then we examine possible
deviations by relation (2).
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Finally, in order to obtain the force-deformation relations,
it is necessary to know the plastic deformation. The exact
nature of this dependence is not yet fully known, and it depends
on experimental research. Therefore, the problem of plastic
deformation has not yet been completely solved.

9.1.2. Tidal Deformations

The surface of the lakes and seas of the Earth is subject
to periodic rise and fall in an interval slightly greater than
Lday.:. Newton interpreted this phenomenon as a result of the
gravitational force applied to the Earth by the Moon, mainly in
combination with the gravitational force of the Sun. The solid /186
crust of the Earth and the atmosphere of the Earth are subject
to an analogous influence, on a smaller scale. Tides are due to
the difference ofb.;the gravity of the Moon on the Earth's surface
from the gravity of the Earth's center. The result of this
difference in gravity is the rise in the directions connecting
the Earth with the Moon, and fall in the directions perpendicular
to the former.

Consider the positions of the Earth and the Moon (E,M). If
MM is the gravitational force of the Moon per unit mass at point
M and EP is the corresponding unit at point E, and if we analyze
MM in two components, one equal to EP and the other to MR, then
MH causes the water to rise and brings it toward A. We analyze
MR in the radial component Ma and the tangent ME (circumferential).
Then Ma reduces the intensity of gravity at A, A' and increases
the intensity of gravity at B, B' and ME moves the water toward
A, A'. Therefore, we have rise at A, A' and fall at B, B', and
the water mass tends to take the shape of an ellipsoid by
revolution around the direction connecting the Earth with the Moon.
The tidal force (the difference of the gravity on the surface and
in the center of the Earth) is proportional to the mass and
inversely proportional to the cube of the distance. This can
be proved as follows. If M is the mass of the Moon with respect
to the mass of the Earth, r its distance measured in radii of
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the Earth, then the acceleration at E will be g 2 and at A,
M r

----- Therefore, the tidal force F will be /187(r-l)

F;9 ., , 7= Mr,' 2 ,_+. -2@-

If the Sun lies on the same straight line connecting the
Earth with the Moon, its force of gravity is added to the one of
the Moon. The gravity of the Moon and Sun tend to decelerate
gradually the rotation of the Earth.

9.2. Theory of the Rotational Motion of an Elastic Body /188

9.2.1. Derivation of the Equations of Motion from the
Angular Momentum of the Earth

Consider a right-handed fixed coordinate system X', Y', Z'.
The plane X'OY' coincides with the plane of the ecliptic at an
initial time, and the axis OX' passes through the point y of
the vernal equinox of this time.

In this system,_ we denote the
unit vectors as i' ,j', k'. We
also define a second coordinate

"- - system as follows: The axis OZ
is in the direction of a unit
vector K and the axis OX along
.the direction of the vector i,
where

N 1  sine

(Note: 6 = obliquity; P = length
. measured from one position), and

6 is the angle between K, K'.
We call the angle between OX'
and OX y.

The cross product of two vectors is a vector normal to the
plane of the other two with norm equal to the product of the
norms of the two vectors times the sine of their angle:

K ̂  K' = i • sine = K-K'*sine

i.e., the vector of norm i = K.K' lies on the plane X'OY' in
such a way that the three vectors K, K', K ̂  K' constitute a
right-handed coordinate system.
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Any vector can be written in the following form:

X' )-. j-+ z',,<'- ii "YZ' ,,z = -A, t2,"'= ','a1

where x', y', z' and x,y,z are the projections of a vector \. On
the axes of the two systems a4/ w and ct, at, -a6 are the components
of the vector in the three directions K, K', i.

z From Eq. (1.1) it is easy to /189
find the expression for the
projections of the vector on the
two systems. For this purpose, we
use the following table of the

& Idirection cosines of the axes of
the two systems.

0 * The table is constructed
.o . " by using the spherical triangle

defined from the axes of a sphere
having as center the point 0 of
the system; for example, in order

= - 2 A / to find the expression for x' in
terms of a , a~, -a , we take

/ the scalar product of (1.1) with

158 -* '- --- =

"C co.' s i o

4 -cot 0 J/, co.V COS/, -S/

J -SI Ji' Jih Coi c. COED
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We call G the angular momentum (expressed in terms of the
angular velocity). Then G = KIGI. Therefore,. the projections
of G on the fixed axes are given from the relations

z(1.2)

We call the angular velocity of the rotation . ..Then, from
the rate of change of the angular momentum, we obtain

/7' & A c I- (1.3)

where , is the torque of the externally applied forces.

Assume that r. = x'i'+ y'j' + z'k' is the position vector of
the celestial body (Sun or Moon). The force applied on this
body by the Earth is V (grad v), where V depends on the direction /190
of the principal axes of inertia.

Z- A-acly (1.4)

where 3

where M is the mass of the celestial body, f the gravity constant,
and I the inertia tensor of the Earth. Consider the following
figure.

As usually the force is related
to the potential((of, energy, or
of gravity, etc.) by a relation of

Ia L the form

/ but Q# lrac'V

(1)

Therefore, the vector of the external
torque will be

grd -r Y

From Y=- 2 ~ ,. we will have:
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1(1-5)

Since grad is in the direction of r, we can omit the second
r5

term, (the inner product does not contribute). It is also true
that grad (r • IF) = 2Ir. So if we substitute in Eq. (1.4), we
have:

A5  (1.6)

Since the system xpz rotates, the angles e, 4 change. There-
fore, we can write the angular velocity of this frame as the
vector sum of the two angular velocities, i.e.

o_ = ,'_.- , / because -' - J,

(see [reference left out of original]).

-k =--A we multiply both members (1)
\ byi

but , - 1 - =e =

r7

Similarly, the other.

Therefore, /191

because -AG = C (' K -7, , )- (-"r. ij) \-

e- ., E - G ,-, L - o] = a (-, 1"-,/; ,
Using this result, we take the inner scalar product of both

sides of Eq. (1.6) with the vectors -z, k and k'.in rotation.
Then we obtain (1):
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Or 7i _ S9 - A I/v ZP Tr) times

_ J//I A ( 1)- A Jf, Ir ( A) times (1.7)

The last expression was found by the law of transposition of
the triple inner product. Essentially, the above equations give
the projections of L on the system L, K, K', where L was substi-
tuted by its causal expression.

9.2.2. Change of the Inertia Tensor Due to the Deformation
of the Earth

We will find the expression for the inertia tensor of the
Earth, as the shape of the Earth changes under the influence of
a force of tidal nature. We will consider the ellipsoidal shape
of the undeformed Earth (when no force is acting on it) as a
biaxial ellipsoid in order to assume that the moment of inertia
of the Earth with respect to any equinoctial axis is A. We take
the principal axes of this ellipsoid as the axes of an auxiliary
coordinate system, and we qenote by a, B, y the cosines of the
angles that the axis OZ* (I) of this system forms with the axes
of the principal system. The inertia tensor of the Earth in the
auxiliary system (system of principal axes, because the ellipsoid
was taken - diagonal form) is a diagonal of the form

4 0 0

o A /
o a c

(diagonalized)

And it is easily shown that in the system 0OY it is (the /192
inertia tensor) AE + (C - A)P (1.8) where E is the Earth tensor
and the P tensor is given by OX.

P=I (1.9)
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Assume now that the motion of the Earth stops. If the
Earth were in reality a fluid body (geoid) (a hypothesis usually
made in the theory of the shape of the Earth), this would give
a spherical shape, but since the Earth as something concrete, or
even its crust, is an elastic body, it would remain a spheroid
in the absence of rotation, having less pressure than it really
has. In this case, we call the inertia tensor Io and the dif-
ference between the polar and the equinoctial moment of inertia

(1 - K) (C - A)

In fact, the Earth rotates not around the polar axis of
the tensor Io but around the instantaneous axes which change ~w.
their .position continuously. Along this axis, the elastic Earth
contracts with centrifugal force. Therefore, we write the
total inertia tensor

I = Io + I

where the tensor I. takes the diagonal form in the auxiliary
coordinate system, the axis OZ* of which coincides with the vector
of the angular velocity _, i.e. the velocity of the axes OZO. The
difference among the diagonal elements of this tensor is

K(C - A)

If the density and the elastic properties of the interior of the /193
Earth are functions of the distance from the center only, then
it is proved from the theory of the Earth's tidal deformation
that this difference is proportional to the potential of the
centrifugal force VW = -(1/2)n 2W 2 where h is the modulus (the
coefficient, modulus) of the angular velocity of the rotation
of the Earth and W2 a spherical harmonic of the second order.
We can now write the angular momentum G as follows:

G = (Io + II)V

and using (1.8), we obtain:

C (C-A) P/vK &/-E* ( c-..1.4*A)tij2 (1.10)

We denote the direction cosines of the polar axis of tensor
Io in this system by ao, Bo, Yo. For the whole period for which
we haye information for polar motion, the ao and t never exceeded
2..!10- and the Yo was nomore than 10- 11 different from 1.
Therefore, we shall neglect the squares and products of o. and to
and we will put yo equal to 1. Then the tensor Po (corresponding
to P) takes the following form:
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Weidenote the cosines of the angles between 7 and the axes
of the system XYZ by a', ', y'. They have the same formula as
the one of ao, o0 yo, and we can write the matrix P, simply by
changing the indices. From (1.10) we obtain by projection on
the x-axis

Zi-s) fAwu, c c-A)a'0 Wa.. C-1 4 (c-, L i-q.

Denoting (C-A)/A by a2 and wx/ 2 = a', we find by rearranging that /194

•_ ('-K ) oa2  G (1.11)

The projection on the axis of y gives a corresponding rela-
tion between 8' and o. In the denominators, we can neglect the
second term. So we can write

(1.12)

Therefore, the tensor Pw can be written in the form

w= o o - (1.13)o o --k < -(--) '

We shall now consider .the deformation of the Earth due to the
action of the tidal force of the Moon and the Sun. Calculating
the change in the elements of tensor I, which occurs because of
this deformation, we take as spherical the initial shape of the
Earth, .and so we can assume that the inertia tensor of the
undeformed Earth is AE, where E is the identity tensor. Then,
for any coordinate system, the axis OZ * of which coincides with
the line 001 passing from the center of the Earth P and the
changing system, the inertia tensor of the Earth takes a diagonal
form, and the difference between the principal moments of inertia is:
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Vr
o (c-A )

where V is the potential of the tidal force. For the Sun, we
use the symbol Vl, and for the Moon, V2 . The coefficient K is
substituted by the coefficient Ko in the following. The tide
of the ocean is due to the change in centrifugal force, and it
can be considered as static. Hence, the change in the inertia
tensor is related to both phenomena, i.e. the tide of the ocean /195
and the deformation of the solid sphere.

The diurnal and half-diurnal tides of the ocean caused bythe action of gravity can not be considered as static, and
therefore their amplitudes can not be related with simple pro-
portions to the potential of the changing force. In the above
(following) work, we will have to do with diurnal tides initially,
because only these change the inertiaproducts of the Earth.
It is known that the diurnal tide practically does not exist in
the oceans, and for this reason in the calculation of change in
moments of inertia in the case considered, it is necessary to
take account only of the tide of the body (solid crust) and to
use the adjusted coefficients which we obtained after we dis-
regarded the oceanic tide. This ooefficient can be denoted by
Ko .

From the expressions

2 J/

we obtain the following values for the difference between the
principal moments of inertia of the deformed Earth:

:C/ -Cy/ , _ 3//, qo c-x , C1 - = P_2 k. ( - t
2. /"Y (1.14)

Passing now to the case of a rotating Earth subject to the
tidal influence of the Sun and Moon, we can make two additions to
the expression for the inertia tensor, so that it takes the form
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where

ii =(c,-o,) Pr / 12 = Cc- a - PA

S (1.16)

where xl, yl, zl and x2, y2, z2 are the coordinates of the Sun /196
and the Moon, and rl, r 2 the corresponding distances of their
centers from the center of the Earth. Now (1.15) can be written

1= F-) f,4E i (C-A JPo K [AE CC-A)P P,- P, (c-A) P4
3

or r ,

SA ' (-A) - Po Z) /<-- t (1.18)

9.2.3. Equations of Precession and Nutation,

The expression for I obtained in the previous chapter must
be substituted in (1.6)

in which we write the right-hand side as the sum of two terms,

S- I, ,165
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After substitution, we obtain the following groups of terms
where a common factor has been omitted:

.M/ .,, p, P/ ~ H'r 1 02 A 1i? Y2 , -A ,o.,, g P, 1e/

It is easily shown that

If V1 = v2 , the cross product vl  .2 = 0. Also, vl  ' 2 =
= -v 2 A V1 , and for this reason the last sum of the above term is
zero'. We can therefore consider separately the changing influence
of the Sun and Moon. To reduce the computations, we again
restrict our attention to one term of (1.6). Taking account of
r Er = 0, we obtain

5/ / , Z1= 31H PiA (Ifo 7/ ( t 1 ,, )r 'Cu -A 4 k,; A Aeg-s r.

Using this expression, we can transform the right-hand side
of the equation AE + (C - A)P, taking account first of

L A rJ21- A /197
- J.) 

-

k A = - ( C 9I X CO-SL+' Sik 4

Po z + f z 4 K (CrX + .yt2)

On. the othr hand

Hence Po -a

Pot (; ; -) = ;Z ij zeol9 (dox' -ZoJf 4J efo a.X C /Xy.

where we denote by c, E', E" the sums'of the terms which include
the ao and Bo, and therefore they are on the order of 10-6.

Similarly, we obtain
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104 (FA)hyz -(/- ) ~r a'i7zi (KA# 2 A Xzy'.

Here, the:.terms including e, e', e" can be neglected. Then the
equations (1.7) can be written

Gj/ nn = _3/4' (c-A) /yz+'-k7]

CXosVAG Z.e& - /< 7 ,

In order to make an approximate calculation of the change in
angular velocity, we substitute C.n for G. Then:

CA (, K J1 ( (

r C (1.20)

, _3IC-A /-2 . 2jo (, -,1A ./

We remind the reader at this. point that a. and Bo are essen-
tially the direction cosines of the polar axis of the Earth, with
respect to the XYZ system. These axes have an angular velocity
of the Earth around the instantaneous axis of rotation which
almost coincides with the direction of U. /198

Hence, we can approximately obtain, by appropriately choosing
the epoch from which time is computed

a = 106 (order *of magnitude), and then it will be

'd'0.CCrS6k f - 1J/7nf)
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Since 6 and p change slowly compared to nt, we will consider
them as constant in the solution of the above integral equation
(by integration). We will have:

From the terms in the expression for i and 0, the greater
seems to be the constant term , which is the Moon-Sun precession.
In computing this term, we only consider a computation of the
amplitude of the oscillation of An. Using the. values

6- O.f" A /06 L=, /0

S= 50" per year, or 6.8.10-7 rad per day, we obtain An = 1.9"10- 13
rad per day. From this computation, we can conclude the following:

1. The angular velocity of the diurnal rotation of the Earth
and the magnitude of G can be taken as constants (while in the
theory of the rigid body, they were constants in any case).

2. e, El, e are small quantities, all of the same order,
and for this reason we can, with satisfactory accuracy, substitute
Eqs. (1.20) by the following:

.3 -ApC-A

OPS" C J/h 6

/ (1.21)

-3r/H c-A

9, O = angles between the two figures.

These are the usual equations of precession and nutation. /199
The method of integration is well-known.

We observe that the elastic deformation of the Earth does
not influence the motion in space of the vector G, the angular
momentum of the Earth. Moreover, the equations of motion of G
are practically unchanged, for any hypothesis concerning the
interior of the Earth, because for all acceptable hypotheses,
the tidal deformation of the Earth has so small an influence on
the form of the inertia ellipsoid, that its result can always be
incorporated in the torques of the external forces.
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9.2.4. Differential Equations of Mot:ion of the Vector of
Angular Momentum with Respect ;to' the Earth

In order to complete the solution to the problem of the
motion of the elastically deforming Earth, we must find the
motion of the principal axes of the tensor I o with respect to
the system XYZ, or vice versa, the motion of the system XYZ
with respect to the principal axes of the tensor Io which we
denote by OYo, OXo, OZo .

These axes rotate with an angular velocity u. Hence, we
can write

A G L /but L = AG /

-/ (1.22)

The angular velocity w = I-l where I- 1 is the inverse of
the tensor I. In order to compute the entries. of. this matrix,
we can use the formula (I-1) = Qkk/D where the indices k and a
denote the columns and ro of the matrix, Qak is the minor
matrix of the entry (Ikk) multiplied by 1.(-l)k+y and D is
the determinant of the matrix.

In this formula, and to the first,order of the small
quantities

) r"'- _ E [-x) -A Po , ' ~ /200
A CA AC

_- - -A pk - (e-A ) p . _ _ K. C-A f/ (1.23)
A CA CA CA

We now project the vectors of Eq. (1.22) on the axes of the
system Xo, Yo, Zo and we write the tensors in the form

0 0 o 0 0 x
o O o 0 O O C r

169



The tensor I takes the same form as in the system XYZ, but
it is understood that in order to compute its: entries we use
the coordinates of the celestial body in the system XoYoZ o . We
write Eq. (1.22). as. follows:

G - C , G -. 2 AG o (1.24)

We consider separately the sum of the terms

C-A -A

and we note that

where approximately

On the other hand, we have the following approximate expression:

Hence

)F (c-AJ( 2oj-J o X*Z} (i + eI'O Pc

and because C/A is:approximately equal to 1, we have

E = /- ko J Ai / (1.25)

The vector PW G is satisfactorily close to the direction of
G, and we can take to the first approximation
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Then, in the expression. for the tensor I-1, we can neglect
the third term and certainly the first, because EG = G. Taking
all these into account, we can write Eq. (1.22) as follows:

(1.26) /201C--) -4G - (/-ko) o = o (1.26)

We write the equations obtained by projection on the axes of
the system XoYoZ o as:

S/G/Zo 2 because, GaG 1.27)

2=o

where by x, y, z we denote the projections of the vector G on the
axes of the system. It remains to express the Qx, - in terms
of * and 6 Which are the projections of the angular elocity on
the axes OZ' and OX. The position of the system of axes XoYoZo
relative to the XYZ is defined by the Euler angle: u, v, 6,
where u = XOM is measured on the plane XOY, v = MOXo on the
plane XoOYo (OM = intersection of the planes YoOX o and XOY).
Since the angleseo is small, we can construct on the plane XOY
the angle 4 = XON = u + v. We take

Then, it will be : XOX)(o YOV Y.= F i o= 9 0 i- XO= 9 0t

O_ =_k Ji F O - 19 'h or CO ( sn 9

Substituting these values in (1.27), we finally firid

+ C"I-, J ,.,, C,, / _, ) -,,. on , ,,, )1

"- -K) C7 C /-o rt 9 V CO J - o;=c i  (1.28)
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9.2.5. Integration of the Equations of Re'lative Motion of
the Vector of Angular Momentum

Integrating the equations of relative motion of the vector

of angular momentum, we can use these expressions for and e
which are given by the theory of precession and nutation, which

is based on the hypothesis that the Earth is a rigid body.

We write the total angular velocity as the sum of the /202

relative angular velocities w = W' + G.

Projecting on the direction of C ;- h= t Yccor3

from which is obtained

S Lhi- Q cor od=d / (1.29)

The more important term in the expression for i is the Moon-

Sun precession. The change in 6 is not important. Hence nl is
practically constant. Using it in (1.28), we have

* (L- k) czh Y CY 7 (-o) (-. 7tO cOS i . 1-, t )

(1-30)

The expressions for precession and nutation in longitude and

obliquity are

S <'Y= plf ,/7i J//, o -= I9 i( Co. fi i

Hence = A 4 (i / di cofY Hi i ( = M /4; Si~ / 4 /
(1.31)

We write - ii= = Bi i I A'" t; PJr = 61* -13 / (1.32)

Then relations (1.30) can be written as follows:

(1.33)

X + (.I-Ka 2  = C a /-K.)[ P r/ os,, -g,?o, l fl -t]
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The solutions of these equations without the right-hand
side are:

X = Scos (/- K* cLJbf + Vjn / -kX i

Y = U / /-K"] <r~t + Vor {/-Kl etyZhjl (1.34)

where u, v are constants. Then, in order to obtain the solutions
considering also the right-hand side, we first take u, v as
functions of time. Then it will be:

x = - cos Lt-/Cani 4 2Jn (1-) ./-J) A,

N = Sinm [-it 2~ h - 6Co (-K) Z]e -x) (-Kj aLh

and substituting (1.33), we obtain
/203

1 = Cn /-tal -0 n co 0 1 Z-l n'.,IK - d; _ o7 ,9' ,e-- joi .7-1*

+ J; ial [ /<1,; 1 (/-XC -kJA .7

Integrating these expressions, we take sine as constant.
Integrating and rearranging, we obtain:

I = Uo n (/ - ' )a Y1 Vo jco J- e% _

/4 (/- ct z/. JAY
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where uoi'and vo are arbitrary constants. Equations (1.29)
and (1.35) completely define the motion of the system XYZ
relative to the XoYoZo system, and because the motion of XYZ
in space (for example, with respect to X'Y'Z') was found
earlier, we can consider that the problem of the rotation of
an elastically deforming Earth has been solved.

9.2.6. Polar Motion of an Elastically Deforming Earth

Using the formulas employed for the reduction of observa-
tions, we do not take account of the observed declinations of
the stars, which are the angular distances from the plane of
the instantaneous equator which is perpendicular to the instan-
taneous axis of the Earth's rotation, because in proving these
formulas we do not take into account the result of the diurnal
nutation of the coordinates observed.

Starting from formulas (1.21) ( = ... 6 = ...), we
describe the motion in space of G, and not of the instantaneous
axis of rotation.

It is concluded that the formula of nutation of declination /204
gives the change in the angular distances of the stars from the
plane which is normal to G. We call it "the plane of the
dynamic equator." In computing the latitude according to the
observations on the meridian, we use the formula € = + Z,
where Z is the observed zenith distance of the star. Hence,
we find the angle between the vertical and the dynamic equator.
When we determine the position of the pole from the observa-
tions of latitude, we define the position of the pole as the
point where a straight line coinciding with the vector G, not
the axis of rotation, intersects the surface.

The difference is not essential, because the angle between
G and _does not reach 0".002. The instantaneous axis moves
around G on a conical surface with a period approximating a
sidereal day, and hence the observed declination shows a diurnal
term which certainly is not taken into account in computing the
phenomenal position.

The reduction of the auxiliary system which is related to
the vector G (system XYZ) instead of the instantaneous axis has
certain advantages in developing the theory of the rotation of
the Earth.

For the reduction of the astronomical observation, it is
of less importance which system we use. In any event, in this
case it is more accurate at the beginning to use the system of
the dynamic equator.. Then we must define the latitude and the
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instantaneous pole as we have done previously. We denote the
coordinates of the pole by x,y. In accordance with the
definition, we have

C== 2(1.36)

We also write /205

c. ' c. / (1.37)

from (1.35).

r" lo C3. t'/-KJa'bV Uo J/tIi-)Ct ,,-.- (/-Ko) P jir., r tx -

[ 1-/bo/ 19i Jn6,, /V,.t ,f,1' J Y--7
J./_ 4 f. j1n (I-A" cCo,-xz - o- Co/-xa (- t

- f/-K. 0) j.q ; Cr ( ,?A6i9 ,or C - A)v

where

=2 - 1 -. ,2 . , '. 1'/ (_.x /Ja

Considering the sidereal day as the unit of time, , = 2r.
The period of free motion can be found from Ox.

227 k //V l } ,&C/. / -A

A hence----

We have A/(C-A) - 304., T = 433, I - K = 0.72.

The motion of the ocean's water reduces the, Love number K.
According to Molodenskii, the correction is -0..04. But this is
proportional to K $ of K (there is a formula) -+ I-K0 = 0.76.
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The information for the computation of the coefficients 7i, '

is taken from Woolard. The arcs are in the note of the Astro-
nomical Yearbook. In Table 1, the values of these coefficients
are greater than 0".001.. 'q9\ does not reach this value, so
only 9 I is given. It must be multiplied by (I-Ko) and substi-

tuted in (1.38). If we further multiply the first of these
equations by cosX and the second by sinX and take the sum, we
will find the change in latitude at a point of longitude X.
Since nlt + = 6' is the sidereal time, we obtain the following
expression for the forced change in latitude:

6e 0 - ojb7 J' ' -o.., si "-z"- oz 2 .-1.-.-1

- 0"'oo/o s/ (6-2 '- ,.2 I- 0oO ,0o , K,'-3 r ' (1.41)

TABLE 1. /206

OOs20// , 06c ) . , o, o/
A2 ," 8-? ", cos

,aOe , o 5066 o,55 2 2 0, a t t s 8 d . O09

0,0, / 089 0,901a9 O,"O0 07

>1 .""'

l " 4 , 0,o O o3 0, 2Z6 0,0 .i

In this way, we found a synthesis of the small changes in
latitude, of a period about equal to the sidereal day. Oppolver
first showed that these are consequences of the motion of the
rotational axis in space, and he also found their expressions
for a rigid Earth.

The elastic deformation of the Earth leads to the same
relevant reduction of the coefficients of all the terms of
Oppolver, because in Aq the term I-Ko appears everywhere. This
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and the increase of the period of free nutation are the only
evidence of the influence of the deformation of the Earth on
its rotational motion, since the deformation has practically
no influence on the motion of G in space.

9.2.7. A Summary of the Modern Theory

According to what was said in the introduction, we will first
find the equations of motion of the system XYZ with respect to, a
fixed system X'Y'Z'. In the following, we will find the change
in the inertia tensor due to the elastic deformation of the
Earth. The fine point of this calculation, which underlies the
whole elastic consideration of the Earth, is that we can decompose /207
the inertia tensor of the rotating Earth into two tensors Io, Iw
where Io corresponds to the undeformed Earth and I. to the change
due to rotation. This decomposition is valid because the super-
position law holds.

Exactly this decomposition constitutes the greatest step
of the theory of elasticity, because since we assume elasticity
tbtbeLvalid, under no external cause (force or rotation) will the
Earth regain its initial shape. I.e., the tensor T, expresses the
irrevocablef deformation of the Earth due to rotation. If we
consider, besides rotation, the influence of the Sun and Moon,

'-> 1= IO7'JI'J j7

S 7' In order to substitute the
tensor I in the equations of

z motion, it is necessary toI' c define certain systems.

On XOY. plane of the equator
(Z = I)

On X'OY' +plane of the ecliptic
O' (Z = E')

, G = vector of angular momentum
Z*o = principal axis (direction)/ //-

1: Zo = principal direction of the
tensor Zo

XYZ rotates with w around
ZZ* and with 0 around X'Y'Z'.
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Finally, the instantaneous axis of rotation is close to Q.
Substituting the final form of I in the equations of motion (from
the angular momentum of motion), we obtain the equations of
recession and

c-A C-A
2yt C Z

We observe that the elastic deformation of the Earth does not
affect the motion in space of the vector G, i.e. G and w can
be considered constant. And since for all acceptable hypotheses /208
the tidal deformation of the Earth has so small an effect on
the shape of the inertia ellipsoid, the equations for G are
invariant for any assumption about the interior of the Earth.
We therefore observe that the above equations yield the motion
of G and not of the instantaneous axis of rotation. Therefore,
in the formulas for the computation of the declination, we have
essentially measured from a plane IG ) "dynamic equator." So
the position of the pole also is defined as the point where
G intersects the globe. The instantaneous axis moves around
G on a conical surface with angle =0".002 with period almost 1
sidereal day. Therefore, the declination will also show a
diurnal term as well as the motion of the pole, because the
latitude observations are made from G.

We seek now the differential equations of U relative to the
Earth or the differential equations of the system OXoYoZo with
respect to OX*Z or even the differential equations of OXYZ with
respect to OXoYoZo, rotating with angular velocity w. We find
the relationp

X4. Il-k/ ) CX Y = C 1 SKoI (-.rinj e

_- 1KJ Qu X = C, (kk') (SihO sjiq ?COJo ) thus r a,0
-/ -L d)

Zo
where X, Y, Z are the projections. of G on OXoYoZ o . The integration
of these relations gives the equations of motion of XYZ with
respect to OXoYoZ o . The angle between G and w is of the order
of 0".002. From the integration of the above relations and after
substitution of

C178 Cn
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we find the formulas which yield the coordinates of the pole.
This is because Cn = G and x, y = components of G:

From elasticity theory,we derive /209

2 - = 2n
T C -

(we define the sidereal day as the mean time)

A = 304 (1 - K) = 0.72 + T = 433 days,

i.e. we find the period of Chandler.

Thus elasticity theory, on the one hand, suggests the solu-
tion with superposition, and on the other hand it results only
in the increase of the free period and the decrease in the
values of the nutational terms. It remains now to compare the
modern theory and the results obtained by observations. For.
this, we will examine if the forced motion takes place according
to the assumption of an elastic Earth. After a brief presenta-
tion of the manner in which we obtain the constants, we will
examine whether the value of, for example, N is different in
theory from that in the observations. Finally, we will make
a comparison with comments.

9.3. Forced Polar Motion of the Earth

9.3.1. Introduction

From the kinematics of a rigid body it is known that the
motion of the axes of rotation of the body in space is always
accompanied by a displacement of the axes with respect to the
body. Thus, in the Earth, the nutational motion of the instan-
taneous axes of rotation is followed by a cyclic motion of the
pole. Later, during its rotation, it seems to cause small
changes in latitude, the period reaching I day, which are known
as the terms of Oppolzer. In Chapter 1(6), the following.
expression was obtained for these terms, starting from the
hypothesis that the Earth is an ideally elastic body.

/210

=-"0oo66 Jinx- Oo 00SIn (-2 C)- _ O"oozz tin -2L/-c,"oo

-o';oo/o Jn J 3r+ r'J O,'0009 Jion z(X..L)

179



where S is the sidereal time at the position L, , ,r'

drethe mean length of the Sun, of the Moon, the eastern point
of the orbit of the Moon, and the perigee of the Moon, respectively.

We will now try to find whether the observations verify the
validity of this theoretical law. The problem obviously is to
search out the changes in latitude from all, or at least from
some periodic causes, as shown in (31). We have already shown
some difficulties arising in the interpretation of the results
of analysis of the observations. We now consider them in detail.

The fact of the 14-day nutation in declination can be
expressed by the formula

d -ii £2-~ ) ' 0W'OOJ aminr C -ta) /1

If the exact 14-day change in latitude is not obtained by
this formula. thpn,terms appear in the change in latitude with
arguments (2 eg ed]/and (z .~ and because in the definition of

latitude according to Talcott, the stars are observed when the
Sun is in the meridian, the sidereal time is always equal to
the right ascension of the star at the moment and place of
observation. Therefore, the arguments (2-z ). (c Z ca
coincide. Hence, if during the change in latitude a term with

argument(2t -a2ftq') is discovered and its amplitude has .a different
value from the theoretical one, this can be explained as an
inaccuracy of the coefficient of the first term in formula (3.2),
and also as an inaccuracy in the theoretical expression of the
diurnal term of the Moon. This is the second term in the right-
and side of (3.1).

In general, we may consider each of these explanations, but /211
we must justify thaifact that we are going to choose the one
which is the most appropriate for both, the theoretical research
and the reduction of the observations.

Theory and observation could find at any instant the
position of the system of the principal axes of inertia with
respect to any fixed coordinate system. For this it is enough
to take as examples three equations giving the dependence on
time from the Euler angles, in a way in which the relative
position of the two systems with the same origin is defined.
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However, these equations are not appropriate, considering
the rotation of the Earth. They are complex and not easy to
solve. The solution becomes much simpler and descriptive if
we use an auxiliary system and define its motion on(,the one
hand with respect to the fixed system, and on the other with
respect to the principal axes of inertia of the Earth. We are
free to choose such an auxiliary system and it seems that there
exists an arbitrariness in the explanation of the results from
the analysis of the observations, considering the Moon terms in
the change in latitude, due to the arbitrary system. The OZ
axis of this system can be taken, for example, as the instan-
taneous axis of rotation or the axis of angular momentum, but
if we assume that the Earth is composed of a solid (rigid) crust
and a fluid core, we can take it as the axis of rotation or the
axis of the angular momentum of the crust.

In each case, obviously, we will have slightly different
equations of motion of the auxiliary system relative to both /212
the fixed system and the system of the principal axes of inertia
of the Earth. In Fig. 7, OZ is the axis of the auxiliary system
of coordinates, OZ' is the vertical, OS the direction toward any

given star. We ignore the tidal change
of the vertical and the proper motion of

z the star S, so we can assume that neither
s / OZ' changes its direction relative to

the principal axes of inertia of the
Earth, nor OS its direction with respect
to the fixed coordinate system of axes,
for example, the system of the ecliptic
at an initial time.

We have noted that there are some
Fig. 7. possible directions of the axis OZ.

Nevertheless, all these are so close
together that in each case we can take the plane of the diagram
as the meridianal plane. We place

z'oS = , Zz= / , ZO=p 2p (3.3)

Assume that the dependence of p and f on time is taken
on the basis of some assumptions about the mechanical properties
of the Earth. From the observations we can obtain the empirical
expression for the change in Z. Thus it is possible to check
the theory by comparison with the observations. However, the
results of such a comparison will not show how much of each
error we find is attributed to p(t) or to f(t).

We return now to the matter of the Moon terms in the change
in latitude. Earlier, these terms were justified as an
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inaccuracy in the 14-day nutational term which enters the
equation of motion of the OZ axis in sDace. (This is the /213
periodic change of the argument 2C-c c and not the tidal

change in latitude. However, as was shown (in the modern
theory), the formula of nutation describes the motion of the
angular momentum G which remains the same for any logical
assumption about the mechanical properties of the Earth. Hence
if we take the auxiliary axis OZ along the vector G, its
motion in each case satisfies the equations obtained by the
assumtion that the Earth is rigid. Then the difference between
theory and observed changes of Z can be totally attributed to
the inaccuracy of the expression for the angle f(t), which
in the equations determines the motion of the auxiliary system
relative to the principal axes of inertia. In any case, f = 900--
- 4. Hence, the comparison with the observations can answer the
question of whether the expression for the forced latitude change,
which is obtained by considering the Earth as an ideally elastic
body, corresponds to reality.

For this comparison we restrict our attention to the a'
term of (31) which corresponds to the lunar diurnal term. The
first term enters as partial (part) constant quantity in the
value of the latitude, obtained from observation of an individual
pair. The coefficients from the other terms are so small that
they are not easily determined with accuracy from the observations.

9.3.2. The Lunar Diurnal Term in the Latitude Change,
According to Information Given by the I.L.S.
Initial Conditions and Plan of Calculation

The harmonic analysis of the I.L.S. observations in determining
the amplitude and phase of the lunar diurnal term in the change
in latitude requires a long calculation. In trying to abbreviate /214
it, it is necessary to put the initial conditions in as compact
as possible a formula.

For this reason, we divide the 96 pairs of the I.L.S. program
into 24 groups with four pairs in each. These hourly groups,
in contrast to the groups of 2 hours, are used regularly in
the observation work of the I.L.S., and they will be called
"links," a term used by us in the description of the convergent
observations of the two zenith telescopes in Poltava. The mean
right ascension of the stars, which forms the links, is 0.5,
1.5, ... 23.5 hours. We also choose the complete observations.
of the link, which are those from which no pair was neglected.
For each complete link we find the mean value of the latitude,
which is the arithmetic mean from four instantaneous latitudes,

182



obt.ained f r o i observations of tthe pairs which belong to the
link. All the links not completely observed are disregarded.

Then the initial quantities of the material from Carloforte
were reduced by 18%, from Ukiah by 7%, and from Mizusawa, 31%.
To compensate for this abbreviation, we are able to obtain
greater homogeneity (compactness) of the given information and
simplicity of computation. After this preparation, we take
the residuals of the latitude which are obtained for separate
links from the smoothed-out curve of the latitude oscillation.
The residuals denoted by A are subject to harmonic analysis
for the lunar diurnal term. The first step is to arrange the

Ap values according to the phase of the argument 2/ ' - C,,and
after that, of the argument (Z~ / where a is the mean right
ascension of the pair constituting the link. For this, it is /215
necessary to take the mean value of twice the length of the
Moon for all the mean values of the observations of the complete
links. Thus, we construct auxiliary Table 25.

TABLE 25.

-D _0cr e I5 *'cl

_ 2_2
S /9 /1. la. /2.47 0. 28 /2* 1913 9. , /9.o 0 ./

/ /3. 60 .85 /3 2/9. .70
2 /3 .6 .9 /5 2 2. oo3 .o

21.oo .84'4 14. 74 . 4

S/,. .,3 22/14 .9
6 ; rO / 8

i7 .t0 s o 2271 . 327 /6., .ec 23.281 /23
9 /7. .2 2/ 42 .27
/o .. 99 21 899 .8

/ 2 2. 5 9/

/. 3 ./3 ./ .98

In column 1 we give 2elfor the mean points of the time
intervals between instances given in column 2 in Universal time.
In column 3, we give the corresponding mean Greenwich times. We
do not give the complete table included on p. 78 [sic]: and covering
the time from 1899 to 1934.
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We will illustrate the method by an example. Assume that
we with to find the approximate value, two times, of the longi-
tude of the Moon at the mean instance of observation of the
fifth link at Mizusawa the night of January 18-19, 1913. The
local sidereal time of the observation of this link is its
right ascension, which is 4h.5. Because ', the longitude of
Mizusawa is -9h.4, the mean value of the observation of the
pair is always 19h.l of the sidereal time in Greenwich, i.e.
4.5 +(-9.4) = 19.1.

This is equal to 0.80 for a fraction of a day. In hsJ /216
Table 25, we find that the observation time lies in the interval
between January 18.73 and January 19.30. Since the first time
corresponds to 0.56 in the column for sidereal.time and the
second to 0.13, we find that the two times of the longitude of
the Moon at the time of observation were approximately 11.

In this way we divide all the A values into 24 groups,

acccording to the argument 2-0, expressed in hours. Moreover,

for each group we compute the mean value of A and put it in a
square table, a sample of which is given in Table 26.

In the square entries of the table, we write the values of

the arguments 2 and 2 (fct/ . After this, in order to

obtain the mean vaiuies from all the A values corresponding to
equal values of the argument, it is necessary to divide the
sum of the numbers in a scale by 24. So, for example, the argu- /217

ment 2Z-a/ is equal to 1 hour for the A values which we write

into the square entries of the table. Similarly, we have the

mean for the argument 2r'a by dividing by 24 the sum in the

next diagonal. We use the values of the instantaneous latitude
at Carloforte, Mizusawa, and Ukiah from 1899 to 1934. During
this period, the program of observations changes three times
at 1906.0, 1912.0 and 1912.7.

To calculate the reduction at the,)phenomenal position, the
central office of I.L.S. used the (reducing) quantities published
in the Berliner Jahrbuch- [Berlin Yearbook]. The formula for
the computation of these quantities changed slightly in 1916.
Some small nutational terms were introduced, not previously
taken into consideration. Therefore, we decided to divide the
total sequence of observations from 1899 to 1934 into five
cycles: (1) 1899-1906. 0; (2) 1906.0-1912.0;. (3) 1912.0-
1916.0; (4) 1916.0-1922.7; (5) 1922-7-1935.0.
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TABLE 26.

0.5 /. 2.5 3.5 q.5 5.5 . .. 9. 485

20.5
35

"25 I

20.5a5

9.15

20.5

22,.
23.5

First we elaborate on the observations separately for each
cycle. The values of A4 are obtained from the observations for
each link and are divided into 24 groups, as we explained,
according to the argument .0. . Then, in order to avoid ;.l

error in the declination of the pairs that we may find (which
might happen) in the composition of the results of separate
cycles, if the observations are not similarlycdistributed to
the phase, we do the following:

We take the mean value for each column in Table 26. We
subtract this value from the A values of the separate square
entries of the column.: After that, we combine the results of
the observations from the first three cycles and the next two /218
cycles, so that we find the mean values of A obtained separately
from the I, II, III cycles and the IV and V cycles. In order
to allow for differences in the numerical values of the observations,
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we gave a weight of 1 to the results of all cycles except the
Vth cycles, and a weight of 2 to the results from Carloforte
and Ukiah. Thus we obtained two tables for each station, so
that we have six tables in all. We give one of them as an
example, the 1900-1915 cycle for carloforte (Table 27).

Under the heading "diagonal sum," the sum of the numbers in /220
the diagonal is given in the first column (descending), going
from the upper left corner of the table to the lower right
corner. In the "ascending" column, the sum of the numbers in
the diagonal is given from the lower left to the upper right
corner. Under the heading "phase" we give the values of the

phases of the arguments 2 C -e and 2tol corresponding

to these sums. The a values in Table 27 are given in 0".001.
The mean values, which are /these sums divided by 24, are given
in Table 28 in the column with the heading AQ'm for the 1900-1915
cycle and aMm for the 1916-1934 cycle, expressed in 0".001.

9.3.3. Corrections of the Nutational Term, Argument 2- - /Z22

Preliminary analysis of the values of Apm showed that the
expressions for the lunar diurnal term obtained from observa-
tions in the years 1899-1915 and 1916-1934 differ systematically.
In an effort to explain this disagreement, we gave particular
attention to the fact that from 1916 on some new nutational
terms entered the formula, giving the quantities A' and B' in
the Berliner Jahrbuch. Among them, the following exist

07 0/ ,, sin L a 08 0 J-, j i a (3.4)

Since earlier than 1916 this term was not taken into account
in the analysis of change in latitude, there appeared a fictitious

term with argument 2 -o% . The introduction of the correction

due to this nutational term in the initial information would
require long additional calculations. However, we can avoid
making these calculations if we apply the following method of
approximation, allowing for the introduction of the correction
according to the mean values Apm. These corrections are denoted
by ASm.

We transform expression (3.4) as follows

C 0 (3.5)
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TABLE 27.

6"ago it t "a. m
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TABLE- 28.

MCar oorLe Mitaw 1i Crclooret H1zuJawa 1/caA Cao i or, e /1'2usawa Vkeah (aPorle /h zu aw Uloc
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0 -61 Z01-1 T o --e , ,j , , dp J -ci ch
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where

- c li (2 e - cr - oooz sn Oz ro)

/= o1o6l cos (2 j-a} 0, ooo2 cos (2C )+} (3.6)

Starting from (3.5), we obtain the expression

where n is the number of values of AO from which the mean value
Aom is formed for a given group. Since the values are distributed
over phases 2 almost uniformly, we can substitute the sum by
integrating the previous formula which becomes

/ 8/ 
/22 3

---- -d n - ,
d., -J 0 o d-

where 0~ and o are the values of the longitude of the position
of the Moon at the beginning and end of the observation cycle.
In computing these values, we took 1899.8 for the beginning of
observations in Carloforte and Ukiah and 1900.0 in Mizusawa.
1916.0 was taken as the end of the cycle for all the above stations.
After the substitution of the arithmetic values, we finally
obtain, for the correction of the nutational term with argument
2 C- A, for: Carloforte and Ukiah

,~, o. oo,, 4&/ ( - a) o"oo2 cos (0 /- 0'o

and Mizusawa

d S = o:'ooz, cos (2 - ) /
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The corrected A'm values are in Table 28 under the heading
A4m.

9.3.4. Results

We can classify the Am values of Table 28 as follows:

Cycle 1900-1915:

Carlo- 0 i08 (2 (-a-/8",f ooollo Jih/ (2,a t '3)forte

Mizu- ---- O"o79 sl ; ( C - -,?*f 0,"oo? Jl t 12FcY-ISO")
sawa

-t22 _/7 _ 6/

Ukiah O"O/ote di4 (B0 - C1-riF/ t O;oc sfi ($1,q0-/s3

.f23 2 I

Cycle 1916-1934:

Carlo- O'o/fOr in (2 -c-1/ol] 0oo3Z Jn7 (Zta- 2
forte

K, j 16 9 1 4, -24

Mizu- -" 0;100/ dh7 (2{-o )* i O"C J/4 j7 (2Jl tY- 35"
sawa .22u .. 2 3o

/224

Ukiah O'o/o'/ in f7 (-o - ) 01V.o3 z; Ia r i 4

S9 4

The differences between the observed values and those which
are computed from these formulas are expressed in multiples of
0".001 and are given in Table 28 in the O-C column. The numbers
in these columns are used for the determination of the mean
errors of the values found for the amplitude and initial phase
of the lunar terms.
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The expression for the lunar diurnal term can be written
as follows:

/ (3.9)
4 H. S/ 12? 2'[,) f-/z CoJ (2, cr),,'

which is more appropriate for the combination of the results of
some sequences of observation. A summary of the values of the
coefficients MI, Nl, M2 , N2 is given in Table 29. An important
part of the calculations for the lunar diurnal term was carried
out by Miss Vertushenko, and the preliminary results of the
calculations were published simultaneously with ours.

9.3.5. Results of the Research of Other Authors

The study of the lunar terms in latitude change was, until
recently, restricted to the derivation of the major lunar half-
diurnal tidal term, with argument 2 a-2& , where S is the local

sidereal time. The first arguments for the discovery of the
lunar diurnal term were almost simultaneously and independently
presented by Sekiguchi, Morgan and Popov. They first explained
this term, as Fedorov also did, as an inaccuracy in the 14-day
term. The fact that we now present is a different explanation
which does not prevent us from using the results in the general /225
study which follows. In the determination of the coefficients
of the lunar terms, Sekiguchi did the following. He generally
reconsidered the results (abstractions) of the precession and
nutation formula, and he obtained computed values for the coef-
ficients which were different, for some terms, from those that
Oppolver found. Thus, for the 14-day term, according to Oppolver
we have

'f = O,'O&9 si/7 q coj 2< - ooo/ coJ c a J i

while Sekiguchi's result is given by the formula

,,A= - o0 o9/ s,3-cf o'0 o lo I (2c+ 1i

o9' o5 jo a coj g0 - oO89 C J 0 £7 2al
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or in, the form (3.2). If the last:expression is correct, and we
take formula (3.2) in the reduction to the phenomenal position,
a term appears which is

1 o006 6fh C-a)

To this we must add the lunar diurnal term of Oppolver, coinciding
by chance with the last expression for a rigid Earth, so that
we have as the sum

If such a term was discovered in the change in amplitude,
according to Sekiguchi, this could be taken as a proof that his
theory for nutation is better than Oppolver's. However, we do
not have such a valid conclusion, because the difference between
the formulas is explained by an error made by Sekiguchi. This
error was shown by Woolard (see introduction). As initial
material for the determination of the amplitude of the lunar
sidereal term, Sekiguchi used the data from Carloforte, Ukiah /226
and Mizusawa from 1922 to 1934.

The above observations concern only the interpretation of
the results. They agree, as a whole, satisfactorily with ours.
We restrict ourselves to this remark, and we do not put the
results of Sekiguchi in the general summary because (1) the
I.L.S. observations for 1922-34 deal with more material than we
used, and (2) the method of reduction he used is subject to
some objections.

Morgan first announced the results of his study on the
14-day term at the seminar ;on astronomic constants in Paris
(March, 1950). His results were based on the interpretation of
the 4-yearly sequences of observations with the PZT in Washington.
After this, complete material was worked out. 13-yearly sequences
were used, but they were not taken one after the other, but
with some interruptions, so that the total sequence covers an
interval of 19 years.

Morgan presented the lunar diurnal term in the formula

o - 2 = o 2 d. Ji o( - , 9f2 Xn 2 d coja dk' /
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and he determined the coefficient AK from observations. We
rearrange this in the formula

F - F° = 9996dk Jrz' 2, -a]qo, B, ,rz -,' a"j

and we note that this coefficient practically coincides with the
coefficient M1 in (3.9). Morgan found that AK = 0".0067 +
± 0".0020, which coincides with the theoretical value of the
coefficient of the corresponding term in Oppolver's formula.
On the basis of these, Morgan concluded that the lunar diurnal
term in the change in amplitude at Washington is totally due to /227
forced nutation of the pole and thus the coefficient of the 14-
day term does not require correction.

From Morgan's work we can take only the value of M l . The
results are given in such a form that it is not possible to
calculate from.them the coefficients for other terms in expres-
sion (3.9). From the analysis of the observations of two bright
zenith stars :in Poltava, Popov obtained a conclusion opposite
to that of Morgan. He found clear proof in these observations
of the 14-day term, and explained this as an inaccuracy in the
value obtained for the amplitude of the 14-day nutational term.
From 780 observations, of Alpha Perseus and 925 of Eta Ursae
Majoris, he found that

40 =,'O2 Co/ (202823e a

y- = o"034 coT (2C / 29o0

If we put these expressions in the formula in which we have
the lunar diurnal term, we obtain

4 cr 0o28 JiI 7 ,- /2

0 o, 0 3, .,.,. (2 C cv.- )

As we see, the amplitudes of these terms are approximately
taken by Popov as two times greater than those taken earlier.
It is certainly necessary to take into account the fact that
his results include the main lunar half-diurnal tidal,,term also,
but it does not seem possible to attribute the difference to it.
Nor does it seem possible to explain it as something due to the
untrustworthiness of Popov's results, because the separate reduc- /228
tion ftom three sequences of observations gave expressions for
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the lunar diurnal term with enough (common) agreement among them.
Thus the matter of the cases of irregularly great values of the
amplitudes of these terms, obtained from the observations of
the bright zenith stars in Poltava, is still open until more
general material is collected and reduced. (A reduction has
already been made by Popov, and the.new result is inugood
agreement with (3.13)') For the time being, in relation to
the relatively small numbers of observations, the results of
Popov are not included in the general recapitulation.

Attempts have also been made to find a lunar diurnal term
in observations with two zenith-telescopes in a common program
which was introduced in Poltava in 1949 and still continues.
Matveyev used as initial material the differences between the
values obtained for the latitude from morning and night obser-
vations for the first 3 years. As a mean value for the two
instruments, he found:

4 o 0/' , (2'-it - 0 /

With the same observations but for a greater period, Filippov,
using a method similar to the one we used in the analysis of the
I.L.S. observations, found the following value for the term
considered:

0126 S/Z /

Finally, for one more time studying the lunar diurnal term
for the difference "evening minus morning" and making observa-
tions for 6 years, we found

"= ';0090 -Sin J- f2) /229

±30 / /

In order to sum up all the results, we remark that, in
the observations at Poltava in the 1949 program, a lunar,
diurnal term does indeed exist with amplitude exceedingathe
corresponding term in Oppolver's formula. Certainly the number
of observations from which these results were obtained is still
not satisfactory enough to be suitable to be included in the
general summary.
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We give the expression for the lunar diurnal term obtained
by Orlov from observations with the zenith telescope at Pulkovo
from 1915 to 1928.

'd= o0 0/27 jy ( _2.-a- 3 -0o70Z £ ( .a11 -611)

U ±2 -r2z

9.3.6. Corrections in Vertical Change Due to the Tide

Besides forced polar motion, the tidal changes in the
vertical can be a case of small period change in latitude. This
fact must be excluded, which can only be done by a calculation
based on tidal theory. For a rigid Earth, we have the follow-
ing expression for the tidal change of latitude:

where a is the radius of the Earth, g is the gravitational
acceleration, and v is the potential of the force due to the
tide. Next is the sum of the periodic terms from which we use
only the one with the same period as the lunar diurnal term we
are interested in, which is 01. Substituting in the previous /230
equation the following expression for this term:

- 9, 86 .j4 2p6. 3o (2 C- c 

then

d4 = o0oo6.of. S/ 1 (2C-- /)
,' ,.Then, in order to obtain the value of A for an elastically
deforming Earth, it is enough to multiply the expression by some
coefficients d depending on the mechanical properties of the
Earth, which we can roughly calculate. It seems that d is slightly
greater than 1, and we will take it as 1.1. Then, from (3.12),
we find the following expression for the tidal change in latitude
(the 02 term in the note about the tide):

Ca ~ o/o ',/c

39 a8qio e 81 8' 0oo .0' -IT .)J

SPA//-ovO 390 4~' -o oa.S/i (2'-
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These values of A4 must be subtracted from the expressions
of the lunar diurnal term in latitude change, which we found
earlier from the analysis of the results.

9.3.7. Final Expression of the Lunar Diurnal Term in
Change in Latitude

For the most probable values of the coefficients M1, N1 , M2 ,
N2 in (3.9), we have the results which we obtained from the
I.L.S. observatories and also those of Morgan and Orlov. These
results are given in Table 29. Column 4 has the values of Ml
found by observation., but the values of column 5 are corrected
for the influence of tidal change of the vertical. The computa-
tion was carried out in two ways. /231

In the first, the weights of the individual values were
taken proportional to the number of observations of the corres-
ponding sequences; they are denoted by P.

In the second, the weights were taken inversely propor-
tional to the constant errors (mean squares of most probable
values). Since the errors in the values of MI and N1 are always
taken equal for these, we give a simple (separate) weight Pl.
Similarly for M 2 and N2, we give a weight P2. The first method
yields

= 0o~ O 0'oo /Y/ = -0'00/9 e 0;'0006

8 = 0oooz20 O,ot //z = O"ooo/ 0 O,"ooo /

The errors were determined from the deviations in separate values
of the coefficients, from the "center-weight mean values" given
above.

The second method gives

/V= o"oo?/t,"0006 /V = -O'oooz3 tDooo 6

h'z = 0o7,oozc.*oo6 // o ooo, o, Oooc

Here the mean error was computed from the independent errors of
measurement unequal with respect to accuracy (least squares method).
Corresponding to the two computational methods, we find the
following expressions for the l.:lunar diurnal term:
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4 .- S 7 (2 c, -/12-) + oOz0021.d/ 2C-t3)/
_+J /.3 ! D v/9

4, O" 0094 .s, ( 2-- 01 ° t " 0 02o1 joit7 (2 Of et IS'*)

r t 4 13

After the re-establishment of the right ascension a of the
observed pair by the local sidereal time S, we finally obtain

S= -o' 0o9. Jin (J- zo+/ 'o o oz .,r (j~'2 / (3.13)

Then the equations for the lunar diurnal forced motion of /232
the pole can be written

2*.=- 0/:009 J/ (Jo - 2Z 1 -/f l ooo2.Ji 7 (o-2) (3.14)

-/ ooo9 C J -z o'ooz so 2 14
y = - o;'0oo9 .cos (ro -2< , /,~o, ooS2. cor (r,2 (3.1)

where S is the sidereal time at Greenwich.

In theory, we obtained these equations of motion assuming
that the Earth is an elastic body. They also include terms with

arguments o - 2 - and o / 2 / , representing cyclic motions

with periods 1.079 and 0.932 days. In any case, the radius of
the polar orbit in the second motion does not reach 0".0006, so
that essentially the lunar terms in (1.38) give simply a motion
of the pole on a circle of radius 0".005 and a period 1.079 days.

Equations (3.14) obtained by analyzing a great number of
observations show that in reality the forced wobble of the pole
that we considered takes place in a different manner. First,
the motion with period 1.079 sidereal days takes place on a
circle, but the radius has two times the theoretical value,
close to 0".009. Second, all the observation sequences we have
considered, except Mizusawa 1916-1934, give negative values of
N1 . This suggests the fact that the iitial phase of the
motion is not zero, as is assumed in theory.
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TABLE 29.

Observaory i OcPe I 43 ervaln i 1 2 , P

(ori'o/ore... .. ... 19o - 19l5 L ±3J+0.'0088 -0'003k + 0oo 1+07003/ +0"'0025 ±,'0o0/0 4 8 o

... . . . i9C -19341 .1 / , 0103 + ,0088 - ,002/ .0016 .0032- .000/ .00/ i 3 5

izsawa ... .... 900 1945 2/ , + ,002 - ,00 .0022 .0022 -.002209 .002/ 2 2 2

S.. . 193 23 ,00 ,0 + 0025 ,0003 .0028 - .001 l-.00/S .0026 2 1 2

U/a A. . . 1900/--19f5 '28 - ,004 + ,0089 -,0027 .0023 .0034 --.00O1 . 00/7 3 2 3

1> ... 9..... 1g9/ -1939 37 + 04001+ , o - ,0005 .1 007 .0030 4 .003/ .00/ 4 3 4

Walno31 . . -95 28 ,0067 - 0054 - .0020 - - - 3 2 -

Puko,,nvo.... .. 9s - 1928 26 4. ,0121 -4- 0/62 I- 0004 .00/6 + .0015 4.0022 0022 3 4 2



Finally, the observations show a second cyclic polar motion

of period 0.932 sidereal days, which is impossible if the orbit

of the pole in this motion has the theoretical value 0".0006.

9.4. Values of Constants /234

The theoretical values are obtained as follows. If a is
the mean distance of the Moon, the gravitational attraction of

the Moon on the Earth causes a monthly motion of the Earth
with radius K(a/l + K). Thistaffects the direction of a neigh-
boring planet, especially of Venus, close to the opposition, as
it is seen from the Earth. The proportionality of the distances
of the planets is (considered) known, and the result is a
monthly displacement of the Sun, known as "lunar inequality."
So if the distance of the Sun is known, the absolute value of
the monthly displacement of the Earth is known, and thus K is
known because a is known. Thus we find the mass of the Moon.

The parallax of the Sun has been optically determined many
times. The most recent and perhaps most accurate definition
was given by Spencer Jones. If we can measure the perturbations
of other planets due to the Earth and the Moon together, this
will give the ratio (E+M)/S.

L;I But we also have t n - '2 where a' = distance of the

Sun and f E+M = n2 separately for small known corrections. These

equations determine the a/a' and thus the distance of the Sun.

Unfortunately, the best determination of these sequences,
according to E. Rabe, seems to be inconsistent with the one

by Spencer Jones, and it has a very small uncertainty.

Systematic errors have not been discovered in any determina-

tion, b u t analysis supports the one by Rabe.

The ratio of the precession is of the form

C 1 (1)

where a, b are known quantities. Hence, if K is known, we can
find the (C-A)/C, the dynamic ellipticity, already called

precessional constant. The main nutation for a rigid body has /235
obliquity amplitude

(2)
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Until 1901, (1) and (2) were made use of as the pair of
equations defining n and (C-A)/C. Hink determined the lunar
inequality from observation of Venus in "opposition," and he
found an apparently much more accurate determination of K.
Thus the use of the observed nutational constant for this pur-
pose was considered invalid (was substituted). Nevertheless,
the values observed were systematically smaller than those
derived from the lunar inequality and the ratio of the nutation.
Jackson first insisted that the difference was genuine.

For a rigid body, the coefficient would be N = 9".2272
or 9".2242, according to the solar precession adopted by Spencer
Jones and Rabe. The effect of elasticity on the main nutation
is the reason why it seems smaller. The dynamics of a rigid
shell filled with a fluid were studied by Kelvin, Hough,
Greenhill, and Poincar6. Poincar6 gave two different methods.
One was reproduced in hydrodynamics by Lamp, but the other is
better, because of the generalization to an elastic shell and
a nonuniform nucleus. Bonti and Lyttleton directed the
attention of Harald Jeffreys to the paper by Lamb, so that
he found, using Bullen's value for the moment of inertia of the
nucleus, that a fluid nucleus could reduce the amplitude by 1/150.

The correction for the elasticity of the shell reduced
the result, but only when Takenchi gave a complete solution for
an elastic shell with properties found from seismological
information, this showed that the solution for the Earth itself /236
is possible. The most appropriate method was to refer the Earth
to a system rotating with the new angular velocity, introducing
appropriate functions with additional displacements and to use
the coefficients as Lagrange coordinates.

For a rigid Earth, the relation (ratio) of the amplitude
of e and * (obliquity, length) is constant. In all the analyses
of observations before Fedorov, the two components were assumed
to be the ratio for a rigid body. But the theoretical ratio is
slightly affected by the correction due to elasticity, and
affected much more by the correction due to the fluidity of the
Earth's core. This arises as follows.

For any constituent material of the Earth, the precession
remains the same. So if a, the wobble velocity referred to
the axes of inertia, is zero, the constituent material does not
change the forced motion, and for small variations of a, the
changes will be proportional to a. Now, a nutation takes place
on an ellipse, and it can be considered as the result of two
cyclic motions with equal and opposite velocities. If one of them
has its amplitude decreasing by some changes in the assumed
constituent materials of the Earth, the other will respectively
increase, and the ,result will be a change in the relation of
the axes of the ellipse. Hence, we especially consider impossible
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the decrease in the theoretical amplitude of the main nutation
in the obliquity without a decrease in the longitude, of a
greater portion.

In other times, it was considered that nutation can have /237
measured phase differences, taking account of the possible
imperfections of the elasticity of the Earth. Nevertheless,
any kind of pair arising this way appear only from the gravi-
tational attraction of the Moon on the rigid tide, which is
on the order of 10-5 of the ascending differences corresponding
to the ellipticity of the figure. So similarly, if the "rigid
tide" had a lag of 900, the lag in nutations could be only on
the order of 10-3 in cyclic measurement. Furthermore, if the
lag of the tide is extended even by 10, this would lead to
other conclusions which are not verified. Hence this seems
impossible, i.e. that the lag can really be greater than a<few
seconds of arc in each phase, and it is very unfortunate that
it is more than a few.

9.5. Conclusions Regarding Comparison of Theory and Observation

If we compare the results of theory and observation, we find
that as far as forced polar motion is concerned, the motion has
a period =1(1l.079) sidereal day, but the radius of the circle
has twice the theoretical value. On the other hand, from
observations a second cyclic motion results with period 0.932
sidereal day, which would be impossible if the orbit of the pole
had the theoretical value of the radius + 0".0006. As far as
the values of the constants are concerned, their results differ
from the theoretical ones, and the value of N has not yet been
exactly determined.

Therefore we must advance our hypotheses. Thus, we con-
sider the relations between the crust and the core of the Earth.

This consideration constitutes the state of the art, as far /238
as we know, on this subject. It must be noted that we do not
know positively even if the core is fluid or solid. But we have
definitely computed quantities such as density, mass of the core,
etc., with satisfactory accuracy.

A preview of this theory was given before; in the following,
we will develop it in more detail. But in order to complete
the comparison between theory and observation, we must say
that the conclusions reached up to the present regarding this
theory are not enough. Still, a complete theory about the
interior of the Earth has not been developed. Some assumptions
have simply been put forward on the basis of the results. It isttoo
early to predicti' whether,. even after completion of the theory,
some disagreements would: exist. In this case, we should search
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for something more. (At this point, the idea of plasticity is
suggested. I.e., if Hook's law of linear dependence is not
valid, we will have a remaining permanent deformation. There-
fore, the inertia tensor, as has already been developed, will
be of the form I = I' + I + II + I where I' relates to the
deformed Earth. This is a subject ior future research.)
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10. SOME RESULTS CONCERNING THE INTERACTION BETWEEN THE CORE
AND THE CRUST OF THE EARTH

10.1. Historical Introduction

The results of the previous chapters show that indeed there
exist some disagreements between the results of the theory of
rotation of an ideally elastic Earth and the data of the astro-
nomical observations. The reason for these disagreements must
be sought in the assumptions incorporated in the theory, and
the Earth may, after all, not be considered elastic. The
next step is, naturally, to investigate some assumptions about /239
the mechanical properties of the Earth. In order to decide
which assumptions we will investigate, we must first consider
all the combinations of information that we have for the interior
layer of the Earth which can presently be considered trustworthy.

The fact that transverse seismic waves either do not pass
through the core.of the Earth or, if they pass through, are
ve y attenuated, was interpreted by many geophysicists as a
proof that the core is in a fluid state. This, of course, gives
rise to the effect of the fluidity of the core on the rotation
of the Earth. The first person who seriously strove in this
direction was Hopkins in 1830, but his work was published in
1839, 1840 and 1842 and is now of historical value only. Later,
W. Thomson considered the problem, and he proved that the result
would considerably increase the 1/2-year and chiefly the 14-day
nutation. His result was published without proof, and it was
verified by subsequent researchers.

The problem of a rotating Earth constituting a rigid
shell and a fluid nucleus was first considered with the necessary
rigor and completeness by Sloudsky, who made use of the previous
work of Joukofsky. At the same time as Sloudsky, Hough considered
the same problem, but investigated only free wobble.

In 1910, Poincar6 published his research on the precession
of a deforming Earth. Considering the case of a rigid shell
and a fluid nucleus, he arrived at equations which differed
only in form from those of Sloudsky.

From 1910 to 1948, as far as we know, nothing was published /240
on the effect of the fluid nucleus on the rotational motion of
the Earth. In the interim, the development of seismology gave
basic information about the interior constituents of the Earth.
Our conception of the nature of the core changed in an essential
way. The hypothesis of a fluid core was initially suggested in
order to explain Volcanic explosions and the geothermal scale.
During the last 100 years, supporters of this hypothesis
considered the Earth a fluid mass with a fine crust whose thick-
ness was on the order of 10 km. Now we accept a solid crust of
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about 2900 km thickness with a fluid core in it. We have
reliable information about the size, the mass, the density, and
the compressibility of the core. This made it possible for
Jeffreys to give, in two recent works, not only a qualitative,
but also a quantitative calculation of the dynamic result of
the nucleus. He had in mind the explanation of the known dis-
agreement between the theoretical and observed values of the
nutational constant (N). In his first work, he used the
equation of Lamp and the values of the moments of inertia of
the nucleus and the shell, found by Bullen, and he ignored the
elastic deformation of the shell. With these assumptions, he
found that the constant of nutation is smaller than the value
it would have for a rigid body. While later, from the work
of Spencer Jones, it was found to be equal to 9".227, for the
theory of an Earth with fluid core, it was found to be equal
to 9".172.

In the second work, Jeffreys took account of the effect
of the elasticity of the shell and obtained the theoretical
value 9".181. Moreover, he found that the coefficients of the /241
main nutation in obliquity and longitude are affected to a
different degree by the nucleus, so that the ratio of the axes
of the ellipse of nutation needs a correction An where An =

= -0".003. However, the results of the analysis do not assure
the later conclusions, even though the correction An found by
Jeffreys is great enough to be found in the analysis of the
observations.

This last work of Jeffreys is apparently the only one
which attempts to take into account both the motion of the
nucleus and the elastic deformation of the Earth. In this
last work, Vicente and Jeffreys considered two models for the
nucleus, both arranged in such a way as.to have the correct
mass and moment of inertia and ellipticity given from Bullard's
theory about the shape of the Earth.

In the one model, the nucleus is considered homogeneous
and incompressible with a separate body in the center. In
the other, the nucleus is considered as having a square law for
the density, and there is a total change due to pressure. In
reality, the known compression would be taken into account for
about half the reduction from uniformity of the density. Refer-
ring again to the chapter on calculating the main nutational
terms, we observe that the results finally obtained agree more
with the first model. This is surprising, because the pressure
in the nucleus is considered to be great. An intermediate
density law which would be more plausible from the geophysical
point of view would fit with enough conditions. In the works
of Joukowsky and Sloudsky, efforts were made to take into account
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the viscosity of the nucleus. This problem has recently been /242
considered by Sekiguchi and by Bondi and Lyttleton. The
authors of later works used the methods of -the matrix theory
of motion of a viscous fluid, but some, like Sekiguchi, con-
sidered only the case of a spherical nucleus. Note that the
case of a viscous fluid is related to the deformation of solid
bodies and the moment of fluids. From this brief summary, it
is apparent that the study of the effect of the nucleus of the
Earth on rotational motion comes down to the solution of par-
ticular problems. We do not as yet have a general theory
developed to the point where a rigorous test can be made for
comparison with the observations. In any case, for the future
development of such a theory,it is useful to know that small
parts of the particular cases observed have been explained.

10.2. Determination of the Moments of Forces Applied on the
Crust from the Core

The results allow us to obtain some conclusions about the
forces applied on the crust from the core. Without knowing the
nature of these forces, we will attempt to define their moments.

The equation of the rotational motion of the crust can
be written as

Gs = Ls + M (10.2.1)

where Gs is the angular momentum, Ls is the torque of the forces
due to the Sun and Moon, M the torque of the forces due to the
core. We denote by G the total angular momentum of the Earth.
The derivative of G with re.spect to time is, as we have already
seen, a vector on the plane of the equator / - =./ . Thus /243
we can represent it by a complex quantity:

We have already met. this formula in the development of the

modern theory, but there G was put in the formula of the cross-

product w and in front of the first term of the right-

hand side, a (-); sign existed. This can be explained by the
fact that we used a right-handed system of axes in this chapter.
Now we use the more common method, i.e. we take a right-handed
positive measurement, so we change the sign of . We write the
following theoretical expressions for the sum of the principal
and the 14-day term in longitude and obliquity:
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119 9= 2"Co o ,q 0884 (10.23)

For obvious reasons, we use the value of the nutational
constant based on the known relation between this constant, the
ellipticity H, and the proportionality of the mass of the Moon
to the mass of the Earth.

, , (10.2.4)

We take N = 9".220, and with this value we compute the other
coefficients in (10.2.9). We obtained them in a greater number
of figures than the first, because the observations give the
expression for the 14-day term more accurately.

If no interaction existed between the core and the crust,
so that torque M in (10.1) could be taken as zero, we would have

--. > G, = G. (CS if/9 /' /(10.2.5)

where h is the ratio of the dynamic ellipticity of the crust to _ /244
that of the Earth as a whole. Then (10.5) can substitute -or Ls
in (10.1).

Because the observer is always on the crust, the equation
of nutation was obtained from astronomical observations and it
describes the vector Gs exactly. Here we will consider only the
term of period 18 1/2 years and 14 days of this motion. The
expression for the main nutational term can be obtained from the
coefficients and corrections found previously, or we can find
from the chapter on determination of the main nutational Iterms,
that it is

J,' 1  (sr, = 6'- So. i ' tD*ooa CO d F /

1 9 (10.6)

where F*, FO are the sums of all the remaining terms entering
the formulas. Then, in order to find the 14-day term, we make use
of the results from the chapter on forced polar motion, for the
lunar diurnal term (first method of solution). We will have the
following equation:
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From this we obtain the theoretical expression for the
lunar diurnal term which we found in the modern theory for an
elastic Earth, i.e.,

The remainder is:

o,03 sM (2f-cr) -o000/9 cof (2It-CY) O, oo2/ J/il (r 7,- (10.8)

We can now consider the difference between the two expres-
sions for the 14-day nutation f the crust. This is adapted
for reduction to the apparent position, and the result is obtained /245
according to astronomical observations. This was found by the
following considerations. The equation of motion from the angular
momentum of the Earth in space remains the same for any hypothesis
concerning the mechanical properties of the Earth, but this is
not necessarily true for the angular momentum of the shell alone.
Inversely, since the shell is an elastic body, we can take it.)that
vector Gs behaves with respect to the shell according to the
theory of rotation of an elastic body, i.e. according to the
equations x ... , y ... of the modern theory (projections of G
on OXoYoZo). Now, when we consider the motion of the shell, we
do not need to change the theoretical equations for the forced
latitude change and the difference between the theoretical and
observational results can be attributed to the inaccuracy of the
theoretical expression for the 14-day nutation of the shell,
which we write as follows, taking the values of the coefficients
given by Woolard:

16= -0,8// J/4 2 C cos c O,"a0s4 1os 2 Cei a' (10.9)

Taking (10.8), we have from (10.9):

-o"oaSC Ji; 24 '-o"oci cos z C) 0, 094C co 2 too00/9 4 )'(l10. 10)

By combining this result with (10.6), and by excluding all
the remaining nutational terms (since they were excluded in the
following transformations), we find:
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(10.11)

It is worth noting at this point that Fedorov, whose
analysis results we take account of in the formulas, found an
error in the above expression. However, omitting a slight cor-
rection, we will continue as if it were correct.

We can already determine the Gs by substituting Eqs. (10.11) /246
in the previously given expression

Because the vector M lies on the plane of the equator, it can
be written as X + iY, and using (10.1), we have

X-'iY= (10.12)

It is interesting to compare the above expression to what
we will obtain for integrated connections between the nucleus
and the shell, where we consider a solid nucleus. The torques
of the forces exerted in this case by the nucleus are denoted
by X' + iY'. In this case, Gs and G are practically colinear.
Then, by substitution in (10.2), we must obtain the theoretical
expression for nutation (10.3). Then we obtain:

k'+iK " = 46 ('-4/( s 7t+ .i (10.13)

Then, in order to calculate h, we use the following in the
moments of inertia of the nucleus An and Cn, obtained by Bullen

S0,0 A, OuZ (10.14)

and we find h = 1.027. Substituting (10.3) into (10.13) and

4iting c= , 3-t where n is the known velocity of the

rotation of the Earth, we find:
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The moment of the force caused by the main nutation can be
written as the sum of the two vectors

Since a is negative, the first vector rotates on the plane
in the right-hand direction, and the other in the left-hand
direction. Relative to the Earth, the two vectors rotate with /247
angular velocities -n + a, -n -a. The torqe caused by the 14-day
term can also be expressed as the sum of the vectors

, Qf"o2. ,G e''" 1 = - o,"oo/0 e-i t/

In the following, substituting (4.3) and (4.11) in (10.12),
we have:

i-'4 Y = ,, ( 0,"2S 6 e' z . 0,o,3 se 0," oo4 * -o o~ " e 0o,

-+ Gs (-o'oola e''0-o$'oo~, e'eC + o" 00/9 e,'4j l.)

= (D'09 0,0. 2i) U (oy o,/j; )/ -A d -,3 0,83 ) / :2, v

We do not think that it is possible, based on these results,
to give a quantitative measure of the effects of the fluidity of
the,.nucleus on the interaction between nucleus and shell. How-
ever, some quantitative conclusions can be drawn. Among them,
the following seem to be the more reliable:

1. The norm of the vector U1 increases.

2. The vector vl reverses its direction.

3. Vectors ul and u2 diverge in the direction opposite that
of rotation of these vectors relative to the Earth.

10.3. Comparison with the Theory of Sloudsky and Poincare

Results 1 and 2 given in the previous chapter seem at first
sight to contradict each other. In any case, this contradiction
can be easily explained if we similarly use the simpler formula of
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the theory of the rotation of the Earth with a fluid nucleus as
developed by Sloudsky and Poincar6. This is a reference to
the hydrodynamic study of Lamp.

We will use the equations given by Lamp for the calculation
of the torque.

4' Ce5, - i (c-' v) 6 "ii *s - "e" / /248

*,' 4J, + , . (10.17)

where = (10.18)

where p, q are the components of the angular velocity of the
rotation of the Earth around a perpendicular equatorial axis
rigidly attached to the shell. Pn and qn are the components of
the angular velocity of the nucleus relative to the shell. Note
that here by the term "rotation" we mean "elliptic rotation"
(as Joukowsky used the term). F is the magnitude (quantity) of
the dimensions of one moment of inertia, and in this case it
equals An i1-C2 .

We put C -4
c- I

(10.19)

and then (10.17) transforms into

'i (Cr -L f-) KU

where Cs and As are the principal moments of inertia of the shell.

Hence we find

If there is no relative motion of the nucleus + -n = 0, and

Xy'= ,'4,e 5t4 (10.20)

The solution of (10.17) is

210



- a - ' d(, ) (10.21)

where
z{ = I~ 6-- C - A] F(61'0

Substituting the values of A and -n in (10.20) and partially
rearranging, we have

" y, " ( 6 ) (10.21)

Using (10.14), we can express the moments of inertia of the
nucleus in terms of the greater- moment of inertia of the Earth,
as follows:

,7 ,7 (" f- C ,76 c' C~ t C, (- ) ( ) CE . <a7 ¢/24
[2 

2 ( J2 z) 2 / /24 C O~F
_q, , P= E = O,088

Substituting the above arithmetic values in (10.21) (the
first), we obtain for the main and the 14-day nutational term
the following results:

Quantity Main Nutation (Vector u1 ) 14-Day Nutational
(vl)

6 - -- o,ooo4,)' /- I + oo7 ), 7

A() -0o, oo281C2 00 6PS 1C'

S q oooo O 0,0006 ooz C

/e . ra#/ /,20 -2,2
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We therefore observe that the result of the fluidity of the
nucleus is an increase in vector ul and an inversion of direction
of vi . It is natural to assume that the divergence of ul and u2in the direction of the diurnal rotation of the Earth can be
explained by friction at the boundary of the nucleus.

Considering a summary of the above, we note that the final
assumption we make is a solid crust of 2900 km thickness and a
fluid core. The most complete work in this direction was
done by Jeffrey in two successive papers. In the second, he
considers the motion of the nucleus as well as the elastic
deformation of the shell. That is, the theory of a totally
elastic Earth is not valid any longer. However, no complete
theory of a fluid nucleus was developed, but we had only a few
points of disagreement. In the following.development, an attempt
is made to determine the moments of the forces which act on the
shell from the nucleus. The investigation is based on the relation /25(

Gs = Ls + M where GUs is the angular momentum, Ls is the moment
of the forces due to the Sun and Moon, and M is the moment of the
forces due to the nucleus.

We propose the following:

If no interaction existed between shell and nucleus, then
it would be

GS = 17 ':G (lQs +ili where = .6 :

and h = ratio of the dynamic ellipticity of the shell to that
of the entire Earth, i.e. we define a corresponding expression
of G.

But in this case, it will also be

Note that the observer stands on the shell. Thus the observa-
tions essentially describe GU and not G, as was considered
up to now.

We_already know Ls . If we determine GU also, we can cal-
culate M. But, based on the above remark, Gs can be taken from
the observations. From the chapter on the principal nutational
terms, we obtain corresponding expressions :for the principal
and the 14-day term. Note that as was stated-in the modern
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theory, GUs behaves (i.e. it is determined) toward the shell,
according to the theory of a perfectly elastic body. Consider
M as X + iY (it lies on the plane of the Equator)

Similarly we find the expression for a solid nucleus /251
X' + iY' which up to now has not given the expected results,
at least in its present form.

If we compare it with Poincare's theory (that is without
final substitution from observations), it again results in an
increase of the principal nutation and inversion of the vector
of the 14-day nutation. The existing differences can not be
attributed to the friction of the nucleus on the shell.

We can not, of course, expect quantitative agreement
between the theoretical results and those obtained from observa-
tions, because the model of the Earth that we used in the theory
is a rough simplification. The elasticity 6f the shell and
the viscosity of the nucleus were not considered in this model
(these were later considered by Jeffreys). At the same time,
the effect of the nucleus on the shell's motion is probablynot
defined by the friction on the shell. Also, other kinds of
forces, e.g. of a magnetic nature, can play an important role.
Note that this is the state of the art on this subject. We
see therefore that each theory is simply a better approximation
toward the convergence of theory and observation, and also
that much work is still required, if not an inspired idea.
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11. STUDY OF THE POLAR MOTIONS

11.1. Motions

From the study of the observations according to the methods
of elaboration presented in the previous chapters, it was
derived that the pole of the Earth does not have a fixed
position, but it describes a complicated curve continuously
moving on the surface of our planet. This curve is called /252
polar orbit. By an appropriate method, we can analyze this
motion, breaking it into other, simpler ones, and therefore
consider it as the vector sum of the following separate motions.

1. We have two motions of the pole of a periodic nature.
The first has a period of 1 year and is thus called annual motion.
Due to this motion, the pole of the Earth describes on the
surface of the Earth an orbit of more or less elliptic shape,
the radius of which changes from year to year between the
values 0".06 and 0".10.

2. The second periodic motion has no constant period but
exhibits changes as time passes ranging from 412 to 442 days,
i.e. it has a period on the order of 14 months. This motion is
known as Chandler motion. Because of this, the pole of the
Earth describes an orbit of circular shape the radius of which
changes with time, taking values between 0".07 and 0".25.

3. Besides the above periodic changes of the instantaneous
pole, we have an eternal change of the position of the p6le
because of which the average position of the pole is displaced
on the surface of the Earth by approximately1O0".003 per year.
in the direction of the meridian corresponding to the value of
longitude A 600 W. This result needs further verification.

4. Finally, we have also other changes in the position
of the instantaneous pole which probably correspond to periodic
motions of small amplitude, or they are totally irregular.

5. The above were found based on the hypothesis that the
Earth is not subject to the action of external forces. But in
fact, the Earth is subject to the action of the forces of the
bodies of our planetary system and especially of the Sun and Moon.

Therefore, due to the action of gravitational force.s of /253
these two bodies on the Earth as a whole, we have another
motion of the instantaneous pole of the Earth which is super-
imposed on the previously studied ones. Because of this motion,
called lunar-solar motion, the instantaneous pole describes
4tiin a day an almost.circular orbit, the radius of which
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changes between the values 0".00 and 0".02. For an observer
standing over the North Pole of the Earth, the lunar-solar
motion of the instantaneous North Pole of the Earth seems to
take place in the retrograde direction, while the annual polar
motion and the Chandler motion, and also the final sum of
motions seem to take place in the right direction, i .e. in the
same direction as the rotation of the Earth. (The matter of
the diurnal lunar-solar motion has already been studied.) We
will attempt a brief qualitative and quantitative interpretation
of the above motions. We must immediately say that the quanti-
tative interpretation is not yet complete. As far as the
qualitative one, in general, it is at least satisfactory.

Therefore, the annual motion is most probably caused by
the displacements of masses at each epoch in the interior,
the oceans and the atmosphere of Earth. I.e., the annual motion
is a forced motion due to the change in physical elements. On
the contrary, the polar motion with the Chandler period is not
forced, but free, corresponding to the condition predicted by
Euler, with the difference that its period is greater than
the predicted one, i.e. instead of 304 days it is on the order
of 14 months. This difference in the value of the period comes
from the different consideration of the Earth, i.e. Euler
considered the Earth as a perfectly rigid body while the Earth
is subject to elastic and plastic deformations. Indeed, it
can be proved that if the Earth is a deformable body and it /254
rotates initially around an axis not coinciding with its principal
axis of inertia, then it deforms with the resultant increase in
the value of the period calculated by Euler.

As far as the eternal motion is concerned, we do not have
a clear answer. The problem appears to be extremely difficult,
because first of all we must eliminate all the systematic errors
which enter in the determination of the position of the instan-
taneous pole. Another problem which also appears is the dis-
tinction between genuine polar motion and the effect of the
change in relative positions of the international observatories,
due to the phenomenon of displacement of the continents. In
any case, for the time being the only thing we can say with
assurance is that the total displacement of the average pole
does not exceed 1". Note that an eternal change of the average
pole on the order of 0".003 per year can be easily interpreted
as the result of the class of poles which is observed in the
area of Greenland.

Finally, the irregular changes in position of the instan-
taneous pole are possibly caused by irregular displacements of
masses in the interior or on the surface of the Earth as, for
example, displacement due to earthquake,. volcanic explosions,
or due to singular meteorological phenoemna.

215



Summarizing the above, we have:

1. Free periodic motion of Chandler

2. Annual periodic motion((forced)

3. Lunar-solar diurnal motion

4. Eternal motion

5. Small period motions
Totally irregular motions

Among the above motions, f r e e periodic motion was inves- /255
tigated fully. Also the annual periodic motion and lunar-solar
diurnal motion were statistically developed from observations.
In the following, we will investigate eternal motion.

11.2. Eternal Polar Motion

We already mentioned that the Earth's pole has an eternal
motion. This phenomenon must be differentiated from that of
the displacment of continents. The hypothesis that the conti-
nents are moving arose from the research of geophysicists during
the past years. Enough theories appeared, like the one by
Wegener, which assumed that the Eastern and Western hemispheres
move independently of each other.

Reliable information about continental displacement is
obtained from paleomagnetic observations of rocks, where we
examine the direction of the magnetic field of the Earth during
the period when the rock was red-hot. Modern geophysical theories
seek to explain exactly these paleomagnetic theories. Thus
it is shown that two things might have happened in the past:
1. Displacement of the pole on a great scale; 2. continental
displacement.

Research was done by some investigators to prove that
continental displacement was derived from changes observed in
latitude and longitude, and that it is not the same phenomenon.
In any case, these changes are possibly caused by observation
errors, lack of homogeneity, and by changes which occurred in
the total observation. In our time, it is generally accepted
that a continental displacement exists, but it has very small
value, so that it requires careful calculation of the sytematic
errors, mainly those caused by the proper motions of the stars.
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Measurements of continental displacement give a mean value /256
for a long time interval. Also, a paleomagnetic check gives
about the same value of the displacement velocity. This is
on the order of 0.5-0.3 cm/year. But this implies a displace-
ment of 1 meter in about 33 years, with the exception of
certain areas in India, which are displaced faster. The probable
error of observation in the I.L.S. stations for a year is on
the order of 0".022. Therefore, from the observations made by
these stations for 1 year, we can not discover this phenomenon.
For this purpose, observations over a long ;sequence of years,
on the order of 50 years, are required in order to have sig-
nificant results.

Since we are concerned with continental displacement, it
is obvious that we will obtain better results from observations
of longitude. Because of this idea, systematic observations
were made using the astrolabe and the PZT of longitude. The
general conclusion of the above work is that the change in
longitude is not caused only by continental displacement. After
that, the phenomenon of eternal polar motion will be considered
separately from continental displacement. For the study of this
phenomenon, analysis of the observations of the I.L.S. stations
for the last 66 years was done. The analysis showed that the
mean pole has an eternal motion which is composed of a "pro-
gressive" component on the order of )0".0035/year (10 m along
the 650 W meridian) and of an "equilibrated" component
(oscillating) with a period of 24 years along the 1220 W meridian.
Note that especially the observations for the eternal polar
motion were made by observing the same stars from a chain of
stations, which eliminates the errors due to the positions of
the stars.

Of the two components above, the one of 24-hour period /257
is rather surprising, because as far as we know there is no geo-
physical phenomenon of such period. Finally, Anna Stuko observed
an increase of latitude of Ukiah by 0".003 and a decrease of
latitude of Mizusawa by 0".003 (as much as the "progressive"
component), and she considered this as an assertion of the
geophysical theory about the left-handed rotation of the shore
of the Pacific Ocean.

217



12. LOVE NUMBERS

12.1. Introduction

In the chapter about deformations we stated that investi-
gating problems concerned with oscillations of a year or smaller
period, for a plastic Earth, the use of Love's numbers is
suggested; these are dimensionless numbers, essentially coef-
ficients, describing different physical phenomena. With the
exception of the free periodic motion o'f Chandler, all the
others have periods on the order of 1 year or less. Therefore,
it is considered suitable to develop a method of investigation
by Love's numbers. To this end, we transform appropriately
the Euler equations into a form given by Liouville. Then we
develop the theory of Love . numbers after making reference
for a time to the reference figures. By the Love numbers, we
transform the initial equations of Liouville. Finally, we
obtain the form of Liouville's equation .for, each case, as, for
example, for forced oscillation, free oscillation, etc.

Closing the development of this method, we investigate
the equation of excitation which moves the pole to different
positions around an assumed initial position, and we give a
geometric presentation of them. Thus it only remains to
apply this method to the eternal motion as well as to motions /258
of small periods. Note that the method of investigation with
Love numbers is, so to speak, empirical and more accurate than
the others, because the Love numbers exactly represent the
real situation of the Earth. The great advantage of this method
is that our equations can be adjusted to any future improvement
of our knowledge about the elastic behavior of the Earth.

12.2. Liouville Equations

In the chapter on the classical Euler theory, the formula
in which the change of angular momentum due to externally
applied torque is described is given as:

From this equation, by dt transformations we have the Euler
equations
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If these equations are written in one form, we have the
formula

"_ (11.1)

where, according to the usual summation convention, each index
different from i takes all possible values, and we add the results:
if i 3 j 7 k, then (i, j, k) = (1, 2, 3).

In the above equation, G stands for the angular momentum,
Li for the externally applied torque, w for the components of
the angular velocity and Eijk is the corresponding Krineker
symbol for three indices. That is, it will be

E ijk = 0 if any two indices are equal, i = j, j = k, k = i /259

Sijk = 1 if the indices are of the order 1, 2, 3, 1i, 2 (even)

Sijk = -1 if the indices are in odd order 1, 3, 2, 1, 3.

The equations of form (11.1) are very general, for example,
they may refer to a system of moving molecules. It is useful
for the following to separate the angular momentum into two parts:

where- C ' xx.d

is the variable inertia tensor for the material included in a
volume V and dij is the Kr6neker delta, where

.. = 0 .if i = j

ij = 1 if i 7 j
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gi(t) represents a relative angular momentum

due to the motion ui relative to the xi system (rotating). By
substitution, we obtain the equation

c (CcyA. We 7'(c C Yk. (11.2)

This equation was obtained by Liouville in 1858, and it is
called the Liouville equation. All investigations dealing with
irregularities in rotation will be obtained as particular solu-
tions of the above equation. We make the following remarks:

1. Lj represents an external torque which acts on a body
occupying volume V. The surface bounding this body can be
chosen appropriately, for example considering wind, we could
exclude the atmosphere, choosing the surface so that in this
case an external torque would exist due to the air pressure, or /260
we could consider the planet as a whole, and then it would be
L = 0. The choice is dictated by the total number of available
instruments, e.g., it is easier to determine the air pressure
than the angular momentum.

On the other hand, Lj is the component of the moments of
the forces along the axis of rotation. The change in Lj must
be examined with special attention. If, for example.' we
consider the moment due to wind moving along an axis constant
with respect to time, Lj = 0. But a torque constant in space
has components which vary with time,and with diurnal frequency.

2. The differentiation which takes place has been referred
to a time 0 when the rotating system xj and the fixed Xi coin-
cide. At this instant, the components Li, gi and Cij in the
two systems are the same. But for every future time t' when
xi has changed position, we chose a "fixed" system Xi the axes
of which coincide with those of xi. These are applied according
to the classical theory. In particular, as far as quantities
dCij/dt and dgi/dt are concerned, it is easier and safer first
to make the integration from the formulas of their definitions
and then to substitute them in the general formula and carry
out the differentiation. This is of great significance when
the surface S, which bounds the volume with respect to which
we differentiate, is changing, so that if the integration takes
place before, only then can we overcome deformation of S.
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3. Quantities gi and Cij depend on the density field
p(xK,t) and the relative velocity ui(xK,t). In our equations,
p and ui appear as independent variables.

There are certain restrictions imposed by the conservation /261
of mass, energy, and momentum. However, the equations could
be transformed so that they are not constant but are satisfied
with respect to conservation, e.g. change in the density field
p(t) for motion ui(t). In the following exposition, the
fields p and ui are defined for each geophysical application,
according to their particular laws. With Li, gi and Cij com-
pletely defined, the equations can be solved for angular momentum
wi(t) of the reference system xi relative to the fixed system Xi .

Consider a coordinate system Oyi rotating with angular
velocity 0 = (w,wi)1/2 as the xi system but with axis y3 directed
along the instantaneous axis of rotation. Then

cij/
' /

wi/2 represents the direction cosines of the rotating axes with
respect to the reference axes. (Note that if d/dt represents
the acceleration of diurnal rotation, then wl, w. are the com-
ponents of the wobble.)

12.3. Reference Coordinate Systems

Some distinction is made by some authors between the rotating
axes of reference in the Euler equations and the body axes of
the Earth, the changes of which can be described by:

The two rotating systems can be combined with no loss of
generality. The choice of the xi system is totally arbitrary,
e.g. it could rotate with an angular velocity in the opposite /262
direction from the direciton of the rotation of the Earth.
However, for a coordinate system to be more suitable, the
coordinate axes must be attached somehow to the Earth. In most
papers.1 dealing with the coordinate systems, the rotation takes
place "simultaneously with the rotation of the Earth."

If the Earth were perfectly rigid, there .would be no further
difficulties. But wind, ocean currents, and the fluid core
cause complications. For that reason, the axes can be fixed to
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the "rigid Earth." But there are still tidal deformations of
the solid crust. On the other hand, a relative motion of the
shell of the Earth is accepted by geology. Such a motion is
known to take place, and it has been accepted by Wegener as
a displacement of one continent relative to another. Thus,
finally, we require a set of fixed axes which are kinematically
defined so as to have no restriction on the deforming Earth.
There is a number of possible choices.

1. The Mean Axes of the Body (of the Earth) of Tisserand

These are defined in such a,.way as to have gi = 0. Thus,
if the wind, ocean currents, and all other relative motions stop,
these axes will rotate with the resultant rigid body. For a
perfectly rigid body, rotating with angular velocity wi, the
velocity of any material point is the vector

For a deforming body, we can choose a value of wi, e.g. wi, which
minimizes the quantity

This can be proved for the wi axes so that gi = 0, where wi is /263
the angular velocity of the mean axes. Jeffreys, whose work
we already mentioned, refers the calculations to the mean axes.

2. The Principal Axes or the Axes of the Figure

These are defined in such a way as to have zero product of
inertia Cij i 3 j. Darwin chose the principal axes for his
study of the pole.

The differentiation in the previous chapter is referred to
any set of perfectly rigid axes of rotation. Therefore, both
the mean and the principal axes are included in special cases.

Relations gi = 0,. Gi = 0, i 7 j are the obvious choices
for mathematical simplification, and they lead to noteworthy
simplification of Liouville's relations. But there are dis-
advantages in these basic axes. The wind and other relative
motions rotate the mean axes slowly relative to the observatories,
and this must necessarily be taken into account in the correction
of the observed values. Similarly, the principal axes move
relative to the observatories., Therefore, Jeffreys' choice does
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not facilitate consideration of the facts of relative motion, so
he ignores them. Also, change in angular momentum of the atmos-
phere displaces the mean axes according to the equinoctial
swelling of the Earth, and therefore we will have smooth changes
of the tensor Cij, if the Earth is perfectly rigid.

3. The Geographical Axes

For all the above reasons, the use of the geographical axes
was found necessary; these are fixed in a prescribed manner to the
observatories. There are difficulties due to the relative /264
motion of the observatories. For -many problems, the relative
motion can be neglected. The I.L.S. stations have been dis-
placed close together.

If relative motion is not negligible, we choose a set of
fixed axes which we attach in some prescribed manner to the
observatories. The geophysical observations, astronomical obser-
vations,.:the relative motion of the observatories, and the
equations previously given, etc. are referred to these axes.

The origin ,of all three systems is placed in the center
of the Earth, so that

/-

12.4. Love Numbers and Relative Coefficients

If the Earth were perfectly rigid, we could apply the Liou-
vill equations in order to calculate changes in rotation which
arise from special geophysical phenomena. For a deforming
Earth, the equations are also applied, but their application is
allowed only for secondary phenomena, as, for example, the
deformation (displacement) of the Earth under the action of
small loads and the displacement of the equinoctial swelling
resulting from the changes in rotation. Such displacements of
mass must be taken into account at the same time as special dis-
placements. A comparison of the geophysical and astronomical
observations would provide us with information concerning the
elastic or inelastic properties of the Earth.

The deformations result from "massive" forces such as
tidal forces, and from surface forces, such as atmospheric
pressure. A load suddenly applied on the surface of the Earth
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causes elastic waves traveling with a velocity on the order of /265
kilometers per second. Fundamental modes of free vibration of
the Earth related to these waves have periods on the order of
1 hour. If the period of the forced function is large compared
to this, then it can be assumed that elastic deformations take
place instantaneously, and they are given from static considera-
tions. The oceans and the fluid core need greater response
time than the free vibrations, and there are certain conditions
under which static theory is applied. Consider the correspondence
of the Earth to a variable potential U(r)B' in degree from tidal
forces due to the Moon and Sun and from centrifugal forces
resulting from rotation. These can be written as the gradients
of such a potential. The result of the deformation defines the
Love numbers as follows:

The ground rises by hUsurface/g and the portion added from
the gravitational potential to the displaced surface arises
only after a new distribution, and it is KU. Therefore,
(1 + K) is a factor which gives the attraction of the swelling
by itself, and the substitution by hU/g takes account of this
self-attraction. A fluid surface covering the sphere will
remain of equal potential, and it will rise by (1 + K)U/g
relative to the center of the Earth and by (1 + K - h)U/g
relative to the bottom of the sea.

In addition to the vertical displacement of the solid
surface by hU/g, there is a horizontal displacement with com-
ponents

where 6 = 90 - 4 and A = eastern longitude.

The Love numbers are dimensionless parameters with which we
specify some of the elastic properties of the Earth. Their esti-
mation is the subject of elasticity. Information is taken from a /266
great variety of sequences. The great advantage in writing the
equations in terms of these parameters is that the equations can
be adjusted to any future improvement of our knowledge concerning
the elastic behavior of the Earth. The most detailed calculation
is the one by Takechi (1950) based on variations of density and
elastic properties of the Earth as they are derived from seismic
and other methods. His resultsare:

27 Z 290 hr = C58 Cr =,068

7 0,28/ o,6o o,82
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for the two models suggested by Bullen. There are other methods
of measuring the Love numbers, and for various reasons the
results are not immediately comparable. We will distinguish
the following cases.

1. Deformation from Rotation

Consider the distortion of the Earth due to angular potential
U of degree 6'. The distortion constitutes the source of an
external gravitational potential K(a 5 /r5 )U, by the definition
of K. But the gravitational potential close to the mantle which
insignificantly differs from a body of spherical symmetry is
given by the formula of MacCullagh. In the present case, the-
deformation is a spherical harmonic of a' degree, and the relative
term of MacCullagh's formula can be written (Gm/r) + U where

r2r

The dots imply two additional terms which are obtained by
cyclically interchanging the indices. Consider the special case
of centrifugal potential which is equal to 1/2 2 (the squareodf
the distance from the axis of rotation) or

/267

V12 { rr - f 'j , j .,. ,, _ Y, .i,,

This can be incorporated in the terms 1/36 2 r2 + v where

I

is a spherical harmonic of ' degree. The term 1/3 2 r2 leads
to a purely radial deformation which consists of a contraction
near the center of the Earth and an extension at the exterior
parts. -By substitution of the value of U in V

/> / 4-  7 /./constant where -7/j CjCi , C)/

is the inertia of the sphere in the absence of rotational defor-
mation. This forms the constant, so

cj <j , - ) 225
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G = gravitational constant = 6.670.108

a = radius of the Earth cm 3 g-lcm-2

r = distance from the center of the Earth.

2. The Secular (Eternal)rLove Numbers

The Love number K can be interpreted as a measurement of
the displacement of the Earth due to centrifugal deformation in
the corresponding sequence during the last 5 billion years. With
no loss of generality, we can put the x3 axis along the vector
of rotation. Then

= z= , 1 = . (mean diurnal rotation) and C// C2 z

_ C - .33 C

so K3 = 3GHC/a 5 5 where H is the precessional constant. If all
the mass were concentrated at the center, C = 0 - K, = 0. For
a homogeneous sphere, C = 2 /5 Ma

2 and with M - 5.98.1027 g for
the mass of the Earth, we obtain Ks = 1.14. The exact value
lies between these limits. From the value of H and the universal
gravitational law, we obtain:

C = 0.3336 Ha 2 (compare: homogeneous Earth + C = 0.4 Ma 2 ) /268

So Ks = 0.96.

3. The Love Numbers for Fluid [Earth]

The previous calculation of K entails the observed value of
precession and the form of the ellipsoid derived from measure-
ment of gravity. There are no considerations concerning the
relations force - deformation outside the Earth. Now we will
calculate the "fluid" Love numbers based on the -hypothesis that
the Earth is in hydrostatic equilibrium, i.e. that it has the
shape of a rotating fluid with the same density as that of the
real Earth. For a first order approximation, the ellipticity of
the surface is given by

If the entire mass were concentrated at the center, it
would be hf = 1 and E = 1/5.80. For a homogeneous Earth, Kelvin
showed that hf = 5/2, so that : = 1/232. The observed ellipticity
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1/297 lies between these values. By using the observed value
of E, we have hf = 580/297 = 1.96.

But for a fluid surface hf = 1 + Kf Kf = 0.96, which is
arithmetically equal to the eternal Love number Ks . A more
precise determination was given by Bullard (1948). From the
observed precession and the distribution of the density,found
by Bullen in the Earth, Bullard obtained e-1 = 297; 338 ± 0.050,
assuming hydrostatic equilibrium. The eccentricity can be
independently derived, without the assumption of hydrostatic
equilibrium, from the observations of gravity or from the motions
of the Moon. The resulting values, 296.17 ± 0.68 and 296.72 ±
± 0.65 do not differ significantly from the previous value. The
more recent analysis of the observations of gravity (Heiskanen,
1958) gave 297.0 to 297.2, and they are in better agreement with /269
the hydrostatic value. According to these observations, the
shape of the rotating Earth is not different from that of the
equivalent rotating fluid. It could be a difference of the order
of about 1-3%, and in f auc,.t observations from satellites showed
that this occurs. Such a difference, if it were real, would be
a measurement of how long nonmatieral forces are applied on the
Earth which can withstand deformation under such forces due to its
final rigidity. In the case of infinite rigidity,+ Kf X Ks .
The question whether Kf = Ks or Kf = Ks is important.

4. The Love Numbers Resulting from the Tide

From studies of the Earth's tides and of the wobble described
by Chandler, h = 0.59 and K = 0.29 are obtained. The close agree-
ment with the values previously given by Takenchi obtained from
seismic observations is exceptional. A difference is noticed in
the values hs = 1.96, Ks = 0.96, obtained from the shape of the
Earth. A number of hypotheses can explain this difference, and
it is not known which of them is right. One hypothesis is
based on the relative magnitude of the pressure to the eternal
Love numbers which are referred to the pressure differences, above
a limiting force, or wtoh the Love numbers due to the tide, which
are referred to the pressure differences under a limiting force.

A second hypothesis is based on the relative duration of
the pressures, and a third on the assumption that the Earth was
initially in a melting state and that now it has the shape of
the bodies at the time of melting. Then, the agreement between
K. and Kf entails a small change or no change in rotation. This
is very disagreeable. But there is no doubt that the Earth cor- /270
responds in a different way to the usual tidal potential and
the annual wobble corresponds to the diurnal 9otation.
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We can consider h, K as the asymptotic cases of the general-
ized Love numbers when the frequency is high and the perturbation
infinitesimal. Also, hs and Ks are considered the asymptotic
values for small frequency values and large amplitudes. The Love
numbers due to the effects of the tide are taken from a total
correspondence of the planet Earth to a perturbation potential.
This is given for the combination of the nucleus, the shell,
and the displacement of the oceans. The change in inertia due
to deformation caused by rotation is obtained from the formula

The important terms are the products of inertia, which are
obtained as:

V=

i d J, putting Ks = Kf.

5. The "Equivalent" Earth

Kelvin showed that for an incompressible homogeneous sphere
of stiffness i, the following is true:

K.. It _Z cc 3/ 4

Kelvin's relation gives the values Kf = 2.5, Kf = 1.5 for
the Love numbers, as compared to the observed values hf = 1.96,
Kf = 0.96.for the Earth. (There are no observed values for kf.)
For a better adjustment to the real conditions, the simplest
way (method) is to take the relations h = hf/(l+M), K = Kf/(l+M),
which have the same formula as the Kelvin solution, but they
use the observed values hf = 1.96, Kf = 0.96. The usefulness
of the model of an "equivalent" Earth depends on how well the
two known values h and K can be calculated by a suitable choice /271
of zenith parameter p.

The set of values t = 2.3, h = 0.59, K = 0.29 is in excep-
tional agreement with the best calculations of the stiffness due
to the tide. This value, p = 2.3, is a satisfactory measurement
of the tidal stiffness of the Earth. In conclusion, we can
roughly compute the "fluid" Love numbers af to be 0.23 as
compared to 3/4 for a homogeneous Earth. For this value, and for
p = 2.3, we obtain:
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- + 0.07.

in agreement with Takechi's calculations.

6. The Love Numbers of n Degree

We will have the opportunity to find the Love numbers in
every degree n. Their definitions are given simply by writing
Un in the first chapter instead of U. For a homogeneous
asymptotic sphere, the formulas are

_ ~h //Z =I I'~2 wheredY~ 2 _(~2sither

for n = 2 + N = 1, and we will have the formulas of the equivalent
Earth.

7. Fluid Earth and Plane Stress (or Tension)

Another interesting case is that of a thin elastic.crust on
a liquid Earth. Perhaps this case is well covered by consider-
ing a liquid sphere with a plane strain u which arises from the
curvature. Logically the crust is not under strain unless it is
distorted (deformed). Consider u2 any potential of 0' degree
due to perturbation. The deformed surface is at r = a(1+ES 2 )where

Ji CO 5 *Y JI7 -ki $ I = o to' ii

is the surface harmonic and pm is the relative Legendre function /272
defined by the relation

The potentials resulting from the superposition of the plane.
strain and the deformation of the sphere are:
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P = density, r = distance from the center of the Earth, G = con-
stant of gravity, a = radius of the Earth, e = ellipticity,
S2 = spherical surface harmonic of degree 2.

For a homogeneous sphere 3g - 4fGap, u2 + v2 + w2 = constant
on the plane strain and the terms including S2 give

A-.(VL'2/ 51___2 U = 'S
St' 2surf.-- surf. V where

which is a dimensionless surface tension entering in the same
way as the dimensionless stiffness -.

8. Love: Operatrrs and Love Complex Numbers

In the study of polar motion and the attenuation of the
Chandler wobble, we will make use of the solutions in which the
Earth is considered as a Maxwell or Kelvin-Voigt model. For a
Maxwell, or viscoelastic (elastoplastic) model, the total value
of.the deformation is written as the sum of an elastic and a
viscous term:

/, ds d ( elastic t* elastic )

where . is the stiffness, n the dynamic viscosity and Telastic
the elastic stress. For a Kelvin-Voigt model, the total stress
is written as a sum of an elastic and a viscous stress

2'elastic=: 2P6'1 2,;-e_

-The Kelvin-Voigt model is characterized by the fact that there is
no constant stress associated with the deformation. The Kelvin- /273
Voigt model is represented as a jump and oscillation damping in
parallel, while the Maxwell model is in series.!. The Lov.lcodfa e.
ficients can be written for any combination of jumps and oscil-
lation damping.

Once the elastic problem is solved, the appropriate solution
for the M and K-V models can be found by resubstitution of the
dimensionless i (and not p), with the coefficients
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where r = n/l is the characteristic time and D the operator d/dt.

The Love operators K = Kf/(l+p), K' = -(l-L)/.(l+p) are
suitable. For the case of simple harmonic motion eiat, the
operator D becomes ia and the p, K, K' become the complex
numbers 1, K, K'.

12.5. A Solution of Liouville's Approximation Equation

The Liouville equations are very greatly simplified by a
"perturbation plan." The Earth's deformation is taken into
account by various Love numbers.

12.5.1. Perturbations

The following method is suitable if the figure poles and
the rotation are not very far from the reference pole.

= 2 A c22 C33 4 C3

C( C6? = c, C23 (12.1)

where A, A, C are the moments of inertia with respect to the
principal axes, Q is the mean angular velocity of the earth,
0 = 0.729.10 - 4 rad/sid.s, Cij/c, mi and gi/Od are small quantities
the squares and products of which can be neglected. /274

Then the Liouville equations take the following simple form:

J+ A 7 ' --- r A ~- ~< (12.2)

where Oi and a T are defined from the relations

C-A
A (12.3)

o2 (C-A) L = o . "1

.2 2 c A 3  4(12.4)

.- _ _ 3  +_3 4~ z
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The left-hand side of (12.2) is determined by astronomical
observations, and the right-hand side by geophysical observations.
The dimensionless "excitation function" i includes all the
possible geophysical results of the motion of the Earth. The
length of the day (l.o.d.).[sic].

In the third part of (12.2), ml, m2 , k are the direction
cosines of the axis of rotation. On the complex plane, thisii
will be

,i 111 2 0 7L (12.5)

12.5.2. Free Wobble

In the case of a free nutation of a perfectly rigid Earth,
S= 0 and the expression (ialt) is a solution of (12.5). The
period 2g/a, is about 10 months. The role of the deformation
of the Earth is to increase the period of free nutation by an
essential fraction, about 40%. This result is not at all obvious
and in fact it was not predicted before Chandler's discovery of
the 14-month period in the change in latitudes. The qualitative
explanation is as follows. For a perfectly rigid Earth, the
frequency of the free nutation is proportional to the equi-
noctial swelling. For a deformable Earth, it depends only on
that part of the equinocital swelling which does not adjust to
the instantaneous axis of rotation. /275

Consider the "equation of excitation" which is due only to
rotational deformation. The products of inertia arising from
the rotational deformation are given by the relation

already mentioned. In terms of perturbations noticed, these are

" ( -A = (3 ('-A)- - ' a (12.6)

When these expressions are substituted in (12.4), we obtain
for the excitation equation

where "/ ) (12.7)

is a suitable note. The Eq. (12.5) becomes
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- (12.8)

The approximation depends on aT/ = (C-A)A, i..e. if it is
a small number. The error is 0.1%. Hence (12.7) can be inter-
preted as that part of the excitation function T which is due
to the rotational deformation. Equations (12.7) and (12.8) can
be written according to the formula if +oom = 0 which differs
from the corresponding equation for a perfectly rigid Earth
(with T = 0), iP +am = 0, at this frequency of the free nutation
which was reduced from G2 to

SkK (12.9)

For an equivalent Earth, the value is

/Y/

The principal axes of a body with moments of inertia and
inertia products A, A, C, C12, 013, C23, are inclined (approxi-
mately) by C1 3 /{C-A), C2 /(C-A) relative to the reference axis
x3 . This results from (12.6) and (12.7). So TA describes the
inclination of the principal axis of the rotationally (by rota-
tion) deforming equinoctial swelling, the "axis of deformation."
The positions where the TA axis intersect the surface are the /276
poles of deformation.

The three models in the table below are instructive. In
the case of a liquid Earth, the equinoctial swelling adjusts
perfectly to the rotation, and there is no rotational stability
and vibration ao = 0.OnlyL the part of the equinoctial swelling
which remains fixed during wobble (=70%) yields any stability.
(aT, 0 o = corresponding frequencies, Tidal and Chandrel [sic],

12.5.3. Forced Wobble

Consider an oscillation due to any process following a
path. We will first calculate the excitation function V(t)
as if the Earth were perfectly rigid. The effect of the rotational
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TABLE.

Ho/de 0Tdsk ea/ ec,e c e4o, 4, ,' a,.,
Sove nu 'beeT 4S ie C.

.Perfectly rigid K= O - 6 = 6r =1 cycle/month
Earth

Liquid Earth = S/ -4 6 O

Real Earth /- = 0,29 = o 6o -o = / cycle/month

deformation is to produce an additional excitation:

(12.10)

which must be taken into account during the prescribed excita-
tion. If the initial path of the processes does not load the
Earth (e.g., winds), then the total excitation function con-
sists of two parts, i.e. = + D But if the Earth is not
loaded,

7 (12.11)

where JL = K'* is an additional excitation arising from the
deformation loading. The effect of deformation due to rotation /277is then to cause a larger excitation (and wobble) than the one
obtained for a perfectly rigid Earth. The effect of the defor-
mation is to decrease the total excitation (K' is negative). We
can define, for the interpretation, the deformation due torotation as a positive reaction and the deformation due to loading
as a negative reaction. This is suitable for the definition of
a "modified excitation":

(12.12)

where Kta X is a "transfer function," equal to

234



and 7. (1+< '-

depending on whether-or not the process loads or does not load
the Earth. Equation (12.5) can be written in the following
equivalent form

(12.13)

The two forms differ with respect to the frequency and
excitation functions. The total excitation T includes the
deformation TD due to rotation, and when it is combined with m,
then aT becomes ao and 4 becomes p (term (12.13)).

12.5.4. "Transfer Function"

The transfer function K for the equivalent Earth is obtained
from the definitions of K, K' where

The values are L /

depending on whether the process is loading the Earth or not.
In the following case, the increase from deformation due to
rotation cancels the decrease from deformation due to loading,
and the resulting wobble is the same as if the Earth were
perfectly rigid. At first sight, the result seems surprising. /278
But the deformation due to loading contributes only to the
products of inertia, and these are spherical harmonics of '
degree and of the same type as the deformation due to rotation.

The value of the transfer function K (wobble): no load =
1.43, load = 1.00. These results are compared to the astro-
nomical observations by virtue of the relation

(12314)
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However, the above values must be used carefully. These values
are based on the stiffness of the tidal effect as it is
obtained from the wobble. At high frequencies, the values
fail, because the correspondence of the oceans and the nucleus
must be independent of the frequency. At very low frequencies
the nonelastic deformation of the shell may play an important
role, and the transfer function is then a pure number.

12.5.5. A Geometric Representation

We can take the vector sum of the effects of rotational and
loading deformations. Initially, the excitation and the poles
of rotation are given at the origin of the coordinates. Hence,

= 0, m = 0. At time 0, the excitation pole is suddenly dis-
placed (in the direction 190 East) due to some special event.

In the diagram :below, the Earth is assumed to be perfectly
rigid and the rotational pole m is taken as rotating around the
excited pole (T = 4) as shown. In the central diagram, the case
of deformation due to an excitation which does not load the
Earth is shown ( = 0). The new feature is that the equinoctial
swelling adjusts to the perturbed position of the pole of rota- /279
tion. The figure of the swelling tends to come along a line
perpendicular to the axis of rotation, but in exposing the
elastic only 1-3 successful [sic] is necessary:

k

m = mi + im 2

mi, m2 = direction cosines
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The coordinates xl, x2 are given by the undisturbed pole
in the direction of Greenwich and 900 East of Greenwich. The
disturbed excited pole i is displaced 190 East. The partial
results of the pole of rotation m are given for a perfectly
rigid Earth above, for a deformed Earth, in the case of no
load, due to excitation (middle), and for a loaded and excited
Earth, at the bottom. The initial specific excitation T is the
same in all three cases. The figures show the positions of
the pole of deformation *-D,_of loading 9L, of total excitation 4
and of modified excitation '.

The total excitation,,df the pole 4 ~= + TD consists of the
part ' which was calculated on the basis of the assumption that
the Earth is a perfectly rigid body, increased by the additional
,part *D arising from the deformation. The pole of rotation m
rotates around the average position .of the excited pole with a /280
radius magnified by a factor Kf/(Kf - K) = 1.43 compared to the
case of perfect rigidity, but the distinction m - 4 between the
pole of rotation and the instantaneous excited pole is the same
as in the case of perfect rigidity. The fact that pole * of
a modified excitation is also the average position of the instan-
taneous pole can be proved as follows. Assume that V is at the
center of the concentric circle described by m (of radius R) and
by 4. We can write

where a is the unit vector. We form (K/Kf)m - T,,and;,take account
of the relation

If we also use the relations of forced oscillation, we obtain
T = KT which is in accordance with the definition of 'p.

The velocity of_wandering of the pole of rotation a is
proportional to m - 4 (see (12.13)), and therefore invariable with
reS'pect to..deformation, but the period of a full rotation increases
from 10 to 14 months as the radius increases respectively. The
situation is more complicated if the excited pole loads the Earth
(right figure). The excitation ' + *L for -deformation due to
loading is smaller by 6 than the excitation due to the initially
described surface loading. This decrease is canceled by the
increase due to rotational deformation, so that finally the
radius of the circle described by the pole of rotation is the same

237



as for a perfectly rigid Earth. As always, the velocity of
wandering (rotation of the pole) is proportional to (m - 4).
This is reduced by a factor of 1.4 in comparison to the /281
perfectly rigid Earth, and therefore the period of rotation
increases from 10 to 14 months.

12.5.6. Excitation Function

Equations (12.4) give the total excitation which includes
deformations due to loading and rotation. In all practical
problems, we are obliged to estimate the excitation i as if
the Earth were perfectly rigid, and to take into account the
secondary deformation by means of the transfer function. In
this context, (12.4) can be used as written, substituting 4 i
for j.

Equations (12.4) are well fitted for computing the excitation
function, whenever it changes in angular momentum of motion",.and
it is independent of the inertia product changes. This usually
arises whenever one or the other vanishes, for example, a power-
emitting wheel fixed on the ground and rotating with variable
value of angular velocity gives different values of relative
angular momentum but not of the moment of inertia. In the case
of melting ice, the angular momentum of the flowing water is
negligible, but it changes the moment of inertia.

Equations (12.4) are not suitable if we wish to separate
explicitly the results due to change in material disturbance from
those due to relative velocity. The reason is that Cij and gi
are both included in the relative velocity. Also they are of
the same order. Equations of a separate type were used by Munk
and Groves (1952) in calculating the annual wobble due to wind
and ocean currents. Equations (12.4) can be written:

/282

S2 (c-A) = 1df b />-a5'ek-) 'v -dp v/oo }c (oment (12.15)

O2C (6j f- -p c cv I/Po F( (motion) /vF 3  (moment

where Ap(xi,t) is the density related to the excitation equations
$K(t) and where:

matter:

2 2 =/ - x2 x -
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2 2o03Ut r S - r 33 -=3 z ; z , 3/

motion:

moment: /
- ,o -L3 0/

are functions depending on the material disturbance, the
relative motion (velocity and acceleration), and the moment.
Often Spherical coordinates are suitable. Consider that KA, K0 ,Kr represent the East, South and upward components of the
velocity and

the differential volume.. Then we will have

matter: . = - rvoS3i Gcos cos3, F -rZ i.sn' cowDJ(Ls ,I 3 -r5 Cs'LA;

motion:

-= 2 or cos 5  co 2e0 coidsi ,1 p*i4)

The moment can be written as the sum of two terms:

The first part is .due to the body's force fK, for example the
gravitational attraction of the equinoctial swelling. The 8'
term is due to the surface tension DKm in direction K on a
surface element normal to nm. As a special case, we consider a
smoothed geoid, the surface of which is normal at each point to /283
the vector of gravity passing through the point under considera-
tion. The radial components of the surface tension do not yield
a momeft. The nonradial components are:
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pP, - C19 9  cO4 J /.; C ~ jz j )1119 C-s? /

X 2 / where pmm is the stress component
P 0 along the normal on the geoid. (The

summation convention does not apply
here.) Hence:

Z aip c -p ctJw .6A0 Q.3 cj rl i dy

A graphic summaFy of the effect of the various events on the
excited pole is given in the figure below. It is understood
that a local left-handed rotation has a similar result to a
local failure of mass. Both cyclones are in the Northern
hemisphere.

1, 2, 3, 4 = toward North,
East, South, West motion.

1, 2,,3, 4 = toward East,
South, West, North stress.

Disturbances in the moment are
2  due to a mass, and at 1800 this

140 result has a positive value ofr increase dm/dt at 2700 East. The

/ effect of the relative angular
/ momentum g on a horizontal vortex

/ and the time change dg/dt are shown. /284

.4 t 12.6. Eternal Polar Motion

We have already mentioned that
eternal polar motion of the pole
consists of a progressive component
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and a periodic equilibrium (wobble). It is proved that the peri-
odic wobble takes place with a period of 24 years.

The total deformation excitation b due to the displacement
of the Earth will be proportional to Kd where K is the Love
number and d the distance of the pole of rotation from the axis
of the figure. Furthermore, .if change in r, the free nutational
period, is caused only by the displacement of the Earth,will
be a simple function of K. Nevertheless, T changes with d,
and therefore T may include a function of d2 . The value of d
is given by the free nutational term mo, of the form (iaot)
plus the forced nutational terms m,- of the form (iat) and n,
of the form (-iat). Then it can be shown that this leads to
mean excitations varying as cos(a o ± G)t/2 and that these are
caused by an excitation which changes as cos(a - ao)t/4. The
frequencies (a - ao)/2 and (a - co)/4 correspond to the observed
wobble periods of about 12 and 24 years.

The computed meridian of the Wobble is in satisfactory
agreement with the observed meridian AL. The angle, between AL and
Ap, the meridian of the "progressive" motion, is given by A =
= cost-l((K/Kf)coste) where Kf is the value of K for hydrostatic
equilibrium and 6 is the angle between Ap and the principal
axis of epochic excitation. The amplitudes of the wobble and /285
the apparent fluctuations in progressive motion change with 0o
in an expected way. When the natural frequency ao comes close
to the forced frequency a, the excitations and amplitudes
increase, and the mean pole advances toward the direction of
the progressive motion.

Changes in the length of the day T show as a result a value
of K apparently changing with d. The observed value of T and
the amplitude of polar motion from 1955 show similarly a 6 year
change proportional to Icos(a - ao)t/ij.

The value of K and that of T depend inversely on the mean
excitation. When wobble excitation increases, the values of T
decrease in a different way. Moreover, A increases more when
K increases less. The 6-year excitation which is a consequence
of the free and forced. wobble, shows a similar result. When the
consequences are greater, the excitations caused are smaller
and the values of T are smaller.

Exactly these relations show that in periodic excitations,
nutations are connected with the wobbles and with the change in
the length of the day.

12.7. Small Period Changes

The small period changes and the totally irregular changes
have not been investigated. These changes are caused, on the
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one hand, by epochic periodic phenomena, or on the other hand,
by phenomena which take place suddenly. Such phenomena are
wind, ocean currents, earthquakes, and especially tectonic
phenomena, sudden volcanic explosions, accidental meteorite
falls, etc. It was found that if all the cars in America /286
were driven from Alaska to Mexico, the moment of inertia of
the Earth would change by 1/104. That is, there are known
and unknown phenomena causing changes. A common feature of
them is that the change in polar position which they cause is
very small. Attempts have been made to investigate all these
phenomena, and mathematical formulations have been found for
some of them, and their investigation is proceeding rapidly.
Obviously, after all of them have been investigated, we will
be able to attribute to each of them the corresponding amount
of total change in polar position. In any case, the considera-
tion of all phenomena seems difficult enough.

With this, the above investigation closes, and it is
considered that it touched the main problems, theories and
methods, unraveling the knot of the major part. of
knowledge about polar motion to future works.
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